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RUG interactions are an important factor in
the treatment of patients with human im-
munodeficiency virus (HIV) infection. The

complexity of current drug regimens for such pa-
tients requires that clinicians recognize and manage
drug interactions. Antiretroviral drug regimens typ-
ically consist of three or four antiretroviral drugs but
may include even more. In addition, patients may re-
ceive other drugs for supportive care, treatment of op-
portunistic infections, and immunomodulation, as well
as alternative drugs obtained from health care pro-
viders other than their primary provider. Drug inter-
actions are often unavoidable in HIV-infected patients
because of the drug classes involved and the number
of drugs prescribed. In this article we review the clin-
ically important interactions among drugs used to
treat HIV infection, provide an overview of the pri-
mary mechanisms of drug interactions, and discuss
ways to prevent or minimize the adverse effects of
such interactions on clinical care.

 

MECHANISMS OF DRUG INTERACTIONS

 

Drug interactions can be either pharmacokinetic
or pharmacodynamic in nature. Pharmacokinetic in-
teractions alter the absorption, transport, distribution,
metabolism, or excretion of a drug. In therapy for
HIV infection, pharmacokinetic interactions are often
multifactorial. They may involve alterations in drug
metabolism mediated by the cytochrome P-450 sys-
tem, modulation of P-glycoprotein (a cellular trans-
port protein), changes in renal elimination, changes
in gastric pH and drug absorption, and fluctuations
in intracellular drug concentrations (Table 1). These
processes may take place at various sites in the body
(Fig. 1). Pharmacodynamic interactions alter the phar-
macologic response to a drug. The response can be
additive, synergistic, or antagonistic. Pharmacodynam-
ic interactions do not always modify a drug’s con-
centration in tissue fluids.

D

 

Metabolic Interactions

 

All HIV-protease inhibitors and non-nucleoside re-
verse-transcriptase inhibitors that have been approved
by the Food and Drug Administration (FDA), as well
as those that are investigational drugs, are metabolized
by the cytochrome P-450 enzyme system, primarily
by the 3A4 isoform (CYP3A4), and each of these
drugs may alter the metabolism of other antiretroviral
and concomitantly administered drugs.

 

15

 

 The cyto-
chrome P-450 system consists of at least 11 families of
enzymes, classified by number, of which 3 (CYP1,
CYP2, and CYP3) are important in humans.
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 The
families are further divided into subfamilies, denoted
by a capital letter (e.g., CYP3A). Individual proteins
within a subfamily, called isozymes or isoenzymes, are
identified by a second number (e.g., CYP3A4).
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Drugs can be classified as cytochrome P-450 sub-
strates, inhibitors, or inducers. However, some drugs,
such as ritonavir, nelfinavir, and efavirenz, may have
properties of all three, depending on the specific com-
bination (Table 2). Substrates are drugs metabolized
through this enzyme system, and the plasma concen-
trations of such drugs may be increased or decreased
by other drugs. Inhibition of cytochromes is usually
reversible and competitive, in that the substrate and
inhibitor compete for the same site on the enzyme.
Inhibition also occurs by irreversible inactivation of
the enzyme, leading to pharmacologic effects that are
prolonged until new enzyme can be synthesized.
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Drugs that inhibit cytochromes cause decreased clear-
ance and increased plasma concentrations of substrate
drugs, and the effects may be greater if inhibitory me-
tabolites accumulate during multiple dosing.

Drugs that induce cytochromes increase the rate
of hepatic metabolism of other drugs by increasing
the transcription of cytochrome messenger RNA
(mRNA), which in turn leads to the production of
more enzyme and a corresponding decrease in plas-
ma concentrations of drugs metabolized by the in-
duced pathway. When a CYP3A4 inhibitor, such as
ritonavir, is added to another protease inhibitor, such
as saquinavir, plasma concentrations of the second
protease inhibitor increase markedly (Fig. 2A), often
allowing for more convenient dosing. Increased con-
centrations may also overcome viral resistance to the
drug.
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 The addition of a CYP3A4 inducer, such as
nevirapine, to indinavir or amprenavir results in a de-
crease in the area under the plasma concentration–
time curve of the protease inhibitor (a measure of total
exposure). A substantial decrease could reduce trough
plasma concentrations of the protease inhibitor to a
level below the in vitro concentration required to in-
hibit replication of 50 percent of viral strains (IC

 

50

 

),
with the subsequent development of resistance.

 

Intestinal Metabolism and P-Glycoprotein

 

The liver is the primary site of drug metabolism me-
diated by the cytochrome P-450 system, but CYP3A4
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is also present in the enterocytes of the small intes-
tine.
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 Thus, drugs that inhibit CYP3A4 may alter
intestinal or hepatic metabolism of other drugs. The
20-fold increase in plasma concentrations of saquinavir
caused by ritonavir is probably produced by inhibi-
tion of CYP3A4 at both sites.
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 Grapefruit juice con-
tains various substances that inhibit CYP3A4-medi-
ated metabolism only in the wall of the gut, mainly by
selective down-regulation of CYP3A4 protein in the
small intestine.
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 The area under the curve for plas-
ma saquinavir is increased by 50 to 150 percent dur-
ing concomitant administration of grapefruit juice.
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However, grapefruit juice should not be relied on to
increase plasma concentrations of protease inhibitors,
because the variations in the amounts of flavonoids
and other potentially active substances among prod-
ucts can result in inconsistent effects.
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The enterocytes in the intestinal mucosa are also

a major site of expression of P-glycoprotein, one of
several membrane-bound proteins that increase the
efflux of drugs from cells.
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 Several protease inhibitors
are substrates for and inhibitors of P-glycoprotein

 

26,27

 

;
ritonavir is the most potent inhibitor.

 

28,29

 

 Both cyto-
chrome P-450 enzymes and P-glycoprotein can pre-
sent a barrier to the absorption of orally administered
drugs and have a considerable effect on drug inter-
actions. Figure 2B shows the effect of rifampin on plas-
ma digoxin concentrations through the induction of
intestinal P-glycoprotein.

 

7

 

 Although the inhibition
and induction of intestinal CYP3A enzymes from met-
abolic processes result in direct changes in drug ab-
sorption, the inhibition and induction of P-glycopro-
tein primarily affect the rate of drug absorption.

 

30

 

 The
overlap of tissue distribution and substrate specificity
of CYP3A4 and P-glycoprotein in the gut wall makes
it difficult to define the specific mechanisms of some

 

*AUC denotes the area under the concentration–time curve, CSF cerebrospinal fluid, TMP-SMX trimethoprim–sulfamethoxazole, G-CSF granulocyte
colony-stimulating factor, and HAART highly active antiretroviral therapy.
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Altered intracellular activation
Impairment of phosphorylation Ribavirin and zidovudine,

 

1

 

 zido-
vudine and stavudine,

 

2

 

 zalcita-
bine and lamivudine
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Interference with intracellular phos-
phorylation (in vitro)

Potential for decreased effectiveness 
and treatment failure

Altered drug absorption and tissue 
distribution

Chelation Fluoroquinolones with 
antacids

 

4,5

 

Marked reduction in quinolone AUC 
from formation of insoluble com-
plexes

Reduced antimicrobial effect

Change in gastric pH Indinavir and didanosine
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Impaired absorption of indinavir due 
to increased pH

Low plasma indinavir concentrations 
may lead to viral resistance and treat-
ment failure

Induction of efflux transporters Rifampin and digoxin
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Decrease in digoxin AUC Reduced therapeutic effect
Inhibition of efflux transporters Ketoconazole with saquinavir 

and ritonavir

 

8

 

Increased CSF concentrations of 
saquinavir and ritonavir in relation 
to unbound plasma concentrations

Combination being studied to target 
drug delivery to CSF; clinical rele-
vance unknown

Altered drug metabolism
Induction of cytochrome P-450 Rifabutin and saquinavir

 

9

 

Saquinavir AUC reduced by 47 per-
cent

Low plasma saquinavir concentrations 
may lead to viral resistance and treat-
ment failure

Inhibition of cytochrome P-450 
(hepatic and gastrointestinal)

Ritonavir and indinavir
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Marked increases in indinavir AUC 
and trough concentration

Combination under study to optimize 
therapy and develop more conven-
ient regimens for patients

Inhibition of cytochrome P-450 
(gastrointestinal only)

Grapefruit juice and saquinavir
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Saquinavir AUC increased by 50 to 
150 percent

Increased plasma saquinavir concentra-
tions, but the effect is highly variable

Increase in glucuronosyltransferase Rifampin and zidovudine
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Zidovudine AUC decreased by 47 
percent

Clinical relevance unknown but may 
lead to reduced antiviral effect if tri-
phosphate concentrations are also 
decreased

Reduced renal excretion TMP-SMX and lamivudine
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Lamivudine AUC increased by 44 
percent due to inhibition of tubu-
lar secretion

Dosage alteration unnecessary, since 
increased lamivudine concentrations 
are unlikely to have toxic effects

Pharmacodynamic interactions
Additive or synergistic interactions Zidovudine and ganciclovir Additive bone marrow suppression May require discontinuation or re-

duced doses of one or both drugs or 
addition of G-CSF

Combination HAART therapy Sustained viral suppression Potent therapy associated with long-
term clinical and immunologic im-
provement

Antagonist or opposing interactions Indinavir and saquinavir
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In vitro antagonism at high doses Clinical consequences unclear
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Figure 1.

 

 Various Sites in the Body in Which Drug Interactions Occur.
The inset shows a T lymphocyte in which nucleoside-analogue reverse-transcriptase inhibitors are undergoing intracellular conver-
sion to their active forms. AZT denotes zidovudine, MP monophosphate, DP diphosphate, and TP triphosphate.
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drug interactions and predict the plasma concentra-
tions of certain drug combinations. Morover, the in-
volvement of CYP3A4 and P-glycoprotein in drug in-
teractions is not always complementary. For example,
plasma indinavir concentrations either do not change
or are decreased by the ingestion of grapefruit juice,
suggesting that the activation of P-glycoprotein may
compensate for the inhibition of CYP3A4,

 

6,31,32

 

 but
P-glycoprotein has little effect on the absorption of
saquinavir.
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 The specific contribution of CYP3A4
inhibition and P-glycoprotein activation to interac-
tions within the gastrointestinal tract remains unclear
because most drugs that modulate P-glycoprotein
also inhibit CYP3A4.
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 In any case, the inhibition of
CYP3A4, P-glycoprotein, or both in the gut wall may
have a substantial effect on plasma concentrations of
many anti-HIV drugs.

P-glycoprotein is present at numerous other sites
in the body.
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 Its presence in the renal tubular cells
and hepatocytes results in increased drug excretion
in urine and bile. P-glycoprotein in the endothelial
cells of the blood–brain barrier prevents the entry of
certain drugs into the central nervous system.
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 Keto-
conazole, an inhibitor of both CYP3A4 and P-glyco-
protein, causes a larger increase in cerebrospinal fluid
concentrations of saquinavir and ritonavir than in un-
bound plasma concentrations, suggesting that the in-
hibition of efflux transporters can be used to target
therapy in the central nervous system.

 

Drug Absorption

 

Interactions that alter the absorption of drugs often
lead to dramatic changes in plasma drug concentra-
tions. The concomitant administration of a fluoro-
quinolone with divalent and trivalent cations can re-
duce the area under the curve for plasma quinolone
by more than 90 percent.
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 A didanosine formulation
containing an aluminum–magnesium antacid buffer
decreases the area under the curve for plasma cipro-
floxacin by 80 percent (Fig. 2C).

 

5

 

 These interactions
can easily be avoided by administering the fluoro-
quinolone at least two hours before or six hours af-
ter the antacid, or by using the new, enteric-coated
formulation of didanosine.

The absorption of other drugs may be altered by
changes in gastric pH. For example, because keto-
conazole is best absorbed when the gastric pH is
low, concomitant administration of ketoconazole and
H

 

2

 

-antagonists, antacids, or proton-pump inhibitors
results in marked impairment of the absorption of
ketoconazole.
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 Itraconazole is also best absorbed
when the gastric pH is low, but its administration
with food is more important for achieving high plas-
ma concentrations.

 

38

 

 The absorption of fluconazole
is unaffected by variations in gastric pH.
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Renal Elimination

 

Probenecid and trimethoprim are competitive in-
hibitors of renal tubular secretion of other drugs that
are primarily eliminated through this pathway. Al-
though probenecid increases plasma acyclovir concen-
trations and trimethoprim–sulfamethoxazole increas-
es plasma lamivudine concentrations (Fig. 2D), these
interactions are not clinically important and do not
warrant a change in dose, because high concentra-
tions of these drugs are not associated with adverse
effects.

 

13,40

 

 Probenecid also inhibits hepatic glucuron-
idation of zidovudine and increases plasma zidovu-
dine concentrations by 80 percent.
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 The clinical im-
portance of this increase is unknown.

 

PREDICTING DRUG INTERACTIONS

 

The multiple metabolic pathways of some drugs
make it difficult to predict the outcome of drug in-
teractions. Although in vitro systems have been de-

 

*Data are from Flockhart
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CYP3A4
substrates

CYP3A4
inhibitors

CYP3A4
inducers

 

Astemizole Amprenavir Carbamazepine
Clarithromycin Clarithromycin Efavirenz
Cyclosporine Delavirdine Nevirapine
Dapsone Efavirenz Phenytoin
Efavirenz Erythromycin Phenobarbital
Erythromycin Fluconazole Rifampin
Estrogens Fluoxetine Rifabutin
Etoposide Grapefruit juice Ritonavir
Fentanyl Indinavir Troglitazone
Midazolam Itraconazole
Nefazodone Ketoconazole
Prednisone Lopinavir
Protease

inhibitors
Nelfinavir
Ritonavir

Sertraline Saquinavir
Testosterone
Triazolam

 

CYP2D6
substrates

CYP2D6
inhibitors

 

Codeine Fluoxetine
Desipramine Paroxetine
Fluoxetine Quinidine
Haloperidol Ritonavir
Methadone Sertraline
Morphine
Paroxetine
Risperidone

 

CYP2C19
substrates

CYP2C19 
inhibitors

CYP2C19
inducers

 

Nelfinavir Fluconazole Rifampin
Omeprazole Omeprazole
Diazepam Fluoxetine

 

CYP1A2
substrates

CYP1A2
inhibitors

CYP1A2
inducers

 

Haloperidol Ciprofloxacin Carbamazepine
Theophylline Clarithromycin Phenytoin
Zileuton Erythromycin Phenobarbital

Fluvoxamine Ritonavir
Paroxetine Cigarette smoke
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veloped to test the effects of certain drugs on the
metabolism of other drugs, these systems may not ac-
curately predict the effect in patients receiving drugs
with complex metabolism, and induction interactions
may not be detected if the system can assess only inhi-
bition.

 

42

 

 For example, initial in vitro data from human
liver microsomes suggested that plasma methadone
concentrations would be increased by the inhibitory
effects of ritonavir on CYP3A4.
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 In a clinical study,
however, plasma methadone concentrations were de-
creased by the administration of ritonavir.

 

44

 

 Subse-
quently, ritonavir was found to displace methadone
from plasma protein–binding sites and to increase
its metabolism by inducing CYP2B6, which degrades

methadone.

 

45,46

 

 Studies in hepatocytes revealed no
effect of rifampin on glucuronidation of zidovudine,
but rifampin-induced glucuronidation of zidovudine
was demonstrated in vivo.

 

12,47,48

 

Even clinical studies may not accurately predict
changes if the interaction is dependent on time. Ri-
tonavir inhibits the metabolism of alprazolam during
a short-term regimen of ritonavir but induces the me-
tabolism of alprazolam when it is given for 10 days.

 

49

 

Furthermore, most in vivo and in vitro studies of drug
interactions evaluate two-drug regimens, and the re-
sults may not apply to the multi-drug regimens often
used clinically. This is especially true for a regimen
consisting of three or more drugs with opposing ef-

 

Figure 2.

 

 Mechanisms of Drug Interactions.
Inhibition of intestinal and hepatic CYP3A4 by ritonavir markedly increases plasma saquinavir concentrations when saquinavir is
given at a dose of 400 mg and ritonavir at a dose of 600 mg (Panel A; bars denote standard errors).

 

20

 

 Induction of intestinal P-gly-
coprotein by rifampin decreases plasma digoxin concentrations (Panel B; 

 

I

 

 

 

bars denote standard deviations).

 

7

 

 The combination of
ciprofloxacin and didanosine results in decreased plasma ciprofloxacin concentrations, because absorption of the drug is decreased
by chelation with divalent cations in the antacid buffer of didanosine (Panel C; bars denote standard deviations).5 When lamivudine
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fects on CYP3A4 metabolism. The lack of multi-
drug interaction studies provides little assistance to
the clinician, who is left to rely on adverse effects or
treatment failure to demonstrate whether an interac-
tion occurred.

NUCLEOSIDE-ANALOGUE REVERSE-

TRANSCRIPTASE INHIBITORS

Because nucleoside-analogue reverse-transcriptase
inhibitors are primarily eliminated by the kidneys, they
do not interact with other drugs through the cyto-
chrome P-450 system. These drugs can be given with
protease inhibitors and non-nucleoside reverse-trans-
criptase inhibitors without dosage adjustments.

Nucleoside reverse-transcriptase inhibitors are pro-
drugs that require intracellular phosphorylation to the
active moiety, and they may therefore interact with
drugs that compete for the intracellular activation
pathway. Ribavirin decreases the phosphorylation of
zidovudine and stavudine in vitro, resulting in de-
creased concentrations of the active compound.50,51

Patients who have HIV infection and hepatitis C may
be treated with regimens that contain ribavirin, which
may reduce the efficacy of zidovudine. Similarly, zi-
dovudine may impair the intracellular phosphoryla-
tion of stavudine,1 and this combination is associated
with a less favorable outcome than other regimens
containing two nucleoside reverse-transcriptase inhib-
itors.2 Also, lamivudine inhibits phosphorylation of
zalcitabine.3

Other intracellular interactions may increase the
activity of nucleoside reverse-transcriptase inhibitors.
Hydroxyurea, an inhibitor of the enzyme ribonucle-
otide reductase, which is involved in the formation of
deoxynucleotides, increases the antiviral action of di-
danosine.52 One possible mechanism for this effect in-
volves a decrease in the intracellular pool of 2'-deox-
yadenosine-5'-triphosphate (dATP), which competes
with 2',3'-dideoxyadenosine-5'-triphosphate (ddATP),
the active metabolite of didanosine, for incorporation
into viral DNA. As a result, the intracellular ratio of
ddATP to dATP is increased, improving the antiviral
potency of didanosine. However, the long-term clin-
ical benefits of hydroxyurea-containing combinations
are unclear, because hydroxyurea blunts the increase
in CD4 cells that occurs in response to antiretroviral
therapy and has numerous adverse effects, including
hepatitis, pancreatitis, and bone marrow toxicity.53

NON-NUCLEOSIDE REVERSE-

TRANSCRIPTASE INHIBITORS

The three non-nucleoside reverse-transcriptase in-
hibitors that have been approved by the FDA can in-
hibit or induce cytochrome P-450 activity, depend-
ing on the specific drug. Nevirapine and efavirenz are
moderate inducers of CYP3A4. Nevirapine decreases
plasma concentrations of indinavir and saquinavir (Ta-
ble 3) but does not have clinically important effects

on nelfinavir and ritonavir, because these drugs are
not exclusively metabolized by CYP3A4, and they
induce their own metabolism, minimizing the effects
of further induction.58,60,63 Efavirenz inhibits or in-
duces cytochrome P-450 activity, depending on the
concomitantly administered drug. Efavirenz decreases
plasma concentrations of indinavir, lopinavir, saquina-
vir, and amprenavir55,57,59,64 but increases plasma con-
centrations of ritonavir and nelfinavir by approxi-
mately 20 percent, possibly through inhibition of the
CYP2C9 or CYP2C19 pathway.65,66 Since efavirenz
causes large decreases in plasma saquinavir concen-
trations, this combination should be avoided, unless
given concomitantly with ritonavir.67

Of particular concern is the effect of nevirapine or
efavirenz on plasma methadone concentrations. Both
drugs can reduce plasma methadone concentrations
by about 50 percent in patients receiving methadone
maintenance therapy,68,69 and many patients have
symptoms consistent with methadone withdrawal,
requiring an increase in the dose of methadone. Pa-
tients receiving methadone should be monitored
closely when given efavirenz or nevirapine, with the
expectation that the methadone dose will need to be
increased.

Delavirdine is a potent inhibitor of cytochrome
P-450. Because of its effect on CYP3A4, serious toxic
effects may occur if delavirdine is administered with
antiarrhythmic drugs, calcium-channel blockers, sed-
ative or hypnotic drugs, or quinidine.70 The admin-
istration of delavirdine with vasoconstrictor drugs such
as ergotamine can lead to peripheral ischemia and
can increase the toxicity of certain chemotherapeutic
drugs, such as etoposide and paclitaxel. Clinicians
need to be aware of and avoid these combinations.

HIV-PROTEASE INHIBITORS

HIV-protease inhibitors are associated with numer-
ous drug interactions, many of which are clinically
important (Table 3). These drugs are inhibitors of
CYP3A4 enzymes and are contraindicated in combi-
nation with certain antiarrhythmic drugs, sedative and
hypnotic drugs, ergot derivatives, cisapride, and the
3-hydroxy-3-methylglutaryl coenzyme A reductase
inhibitors lovastatin and simvastatin. Ritonavir is the
most potent inhibitor of cytochrome activity and is
therefore most likely to interact with other drugs.
Indinavir, amprenavir, and nelfinavir have a moderate
probability of causing interactions, and saquinavir has
the lowest probability. The newer, soft-gel formula-
tion of saquinavir is similar to the original formula-
tion in this respect.9 The combination of lopinavir
and ritonavir is likely to have interactions that are sim-
ilar to those of full-dose ritonavir alone, but the mag-
nitude of the interactions may be smaller.57

In addition to inhibiting enzymes, ritonavir has
enzyme-inducing properties, even inducing its own
metabolism in a dose-dependent manner during the
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first 14 days of therapy.71 Ritonavir decreases plasma
concentrations of theophylline, probably through the
induction of CYP1A2.72 Ritonavir and nelfinavir also
increase glucuronosyltransferase activity, which may
partly explain the substantial decreases in plasma ethi-
nyl estradiol concentrations during concurrent thera-
py with these protease inhibitors.73,74 Alternative or
additional methods of contraception are recommend-
ed in women taking ritonavir or nelfinavir.

Not only do HIV-protease inhibitors affect the
metabolism of certain drugs, but their own metabo-
lism is also altered by other inducers or inhibitors of
cytochrome activity. Potent enzyme-inducing drugs
can cause clinically important decreases in plasma
concentrations of protease inhibitors. For example,

rifampin decreases plasma saquinavir concentrations
by 70 to 80 percent.9,54 The resulting low plasma con-
centrations may promote viral resistance and result in
treatment failure. With the possible exception of ri-
tonavir, protease inhibitors should not be given to
patients receiving rifampin.75 Patients with tuberculo-
sis who are already receiving a protease inhibitor
should be treated with a four-drug regimen that in-
cludes rifabutin instead of rifampin.54 For patients re-
ceiving indinavir, nelfinavir, or amprenavir, the dose
of rifabutin should be reduced from 300 to 150 mg
per day to compensate for the inhibition of rifabutin
clearance by these drugs. Increasing the dose of in-
dinavir from 800 to 1000 mg every eight hours, in
addition to reducing the dose of rifabutin, is also an

*AUC denotes area under the concentration–time curve, and HMG CoA 3-hydroxy-3-methylglutaryl coenzyme A. 

TABLE 3. SELECTED INTERACTIONS AMONG ANTIRETROVIRAL DRUGS AND BETWEEN ANTIRETROVIRAL AND OTHER DRUGS.*

DRUG INTERACTING DRUG RESULT* RECOMMENDATION

Amprenavir Rifampin Amprenavir AUC decreased by 81%54 





Avoid combinations of rifampin and 
protease inhibitor except possibly for 
rifampin and ritonavir; use rifabutin 
at adjusted dose with nelfinavir, am-
prenavir, indinavir, and ritonavir

Indinavir Rifampin Indinavir AUC decreased by 92%54

Ritonavir Rifampin Ritonavir AUC decreased by 35%54

Saquinavir (hard or soft gel 
capsules)

Rifampin Saquinavir AUC decreased by 70–80%9,54

Nelfinavir Rifampin Nelfinavir AUC decreased by 82%54

Amprenavir Efavirenz Amprenavir AUC decreased by 36%55 Increase amprenavir dose to 1200 mg 3 
times a day or add ritonavir (200 mg 
twice a day)

HMG CoA reductase inhibitors
Simvastatin Ritonavir with saquinavir 

(soft gel capsules)
Simvastatin AUC increased by a factor of 3256 Do not use simvastatin with ritonavir

Atorvastatin Ritonavir with saquinavir 
(soft gel capsules)

Atorvastatin AUC increased by a factor of 
4.556

Use atorvastatin with slow dose titra-
tion and close monitoring

Pravastatin Ritonavir with saquinavir 
(soft gel capsules)

Pravastatin AUC decreased by a factor of 
0.556

Adjustment of pravastatin dose not re-
quired

Atorvastatin Lopinavir–ritonavir Atorvastatin AUC increased by a factor of 
5.957

Use atorvastatin with slow dose titra-
tion and close monitoring

Pravastatin Lopinavir–ritonavir Pravastatin AUC increased by 30%57 Pravastatin does not require dose ad-
justment

Indinavir Nevirapine Indinavir AUC decreased by 28%58 Increase indinavir dose to 1000 mg ev-
ery 8 hours

Indinavir Efavirenz Indinavir AUC decreased by 35%59 Increase indinavir dose to 1000 mg ev-
ery 8 hours

Lopinavir–ritonavir Efavirenz Lopinavir trough concentration decreased by 
40%57

Consider increasing lopinavir dose to 
533 mg and ritonavir dose to 133 mg

Rifabutin Amprenavir 




Rifabutin increased by a factor of 2 to 354

Decrease rifabutin dose to 150 mg/day
Indinavir Decrease rifabutin dose to 150 mg/day, 

increase indinavir dose to 1000 mg 3 
times a day

Nelfinavir 

Rifabutin Ritonavir Rifabutin AUC increased by a factor of 454 Decrease rifabutin dose to 150 mg ev-
ery 2 or 3 days or 2 or 3 times a week

Rifabutin Lopinavir–ritonavir Rifabutin AUC increased by a factor of 357 Decrease rifabutin dose to 150 mg ev-
ery 2 or 3 days or 2 or 3 times a week

Saquinavir Nevirapine Saquinavir AUC decreased by 62%60 Avoid combination unless ritonavir is 
used concomitantly

Saquinavir (hard or soft gel 
capsules)

Rifabutin Saquinavir AUC decreased by 45% (hard gel 
capsules) or 47% (soft gel capsules)9,54

Avoid combination unless ritonavir is 
administered concomitantly

Sildenafil Indinavir, saquinavir, or 
ritonavir

Sildenafil AUC increased by a factor of 2 with 
indinavir, a factor of 3 with saquinavir, and 
a factor of 11 with ritonavir61,62

Start with 25 mg of sildenafil; with ri-
tonavir, do not repeat the sildenafil 
dose for 48 hours
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option.76 Ritonavir increases the area under the curve
for plasma rifabutin by a factor of four, which may
lead to clinically important adverse effects.77,78 How-
ever, intermittent administration of rifabutin, either
150 mg every three days or 300 mg every seven days,
is safe and tolerable over a two-month period with
a combination of ritonavir and saquinavir (400 mg
of each drug every 12 hours).79 Updated guidelines
for using rifabutin and rifampin in patients receiving
antiretroviral drugs have recently been issued by the
Centers for Disease Control and Prevention.79

Other potent enzyme inducers, such as phenytoin,
phenobarbital, and carbamazepine, can cause similar
reductions in plasma concentrations of protease in-
hibitors.80 Although standard doses of carbamaze-
pine and phenobarbital may have to be decreased in
the presence of protease inhibitors, standard doses of
phenytoin may have to be increased in the presence
of nelfinavir or ritonavir.81 For example, plasma phen-
ytoin concentrations were decreased by nelfinavir, per-
haps through the induction of its CYP2C9-mediated
metabolism.82 Ritonavir may either inhibit or induce
the metabolism of phenytoin, as it does with alpra-
zolam, depending on the duration of ritonavir thera-
py.49 Interactions between anticonvulsant drugs and
protease inhibitors are complex because of their two-
way nature. It is best to avoid these combinations, and
close monitoring is required when they must be used.

Patients who are taking protease inhibitors and
who require prophylaxis against Mycobacterium avium
complex infection can be given azithromycin or cla-
rithromycin. The area under the curve for plasma cla-
rithromycin is moderately increased by ritonavir and
indinavir, but dosage adjustments are not necessary
in patients with normal renal function.83,84 Azithromy-
cin is excreted primarily by the biliary route and does
not interact with protease inhibitors or delavirdine.85

The concept of using drug interactions to the pa-
tient’s benefit has been the focus of much research.
The administration of cytochrome P-450 inhibitors
with other drugs can reduce the pill burden, increase
plasma concentrations, simplify the dosing schedule,
and circumvent drug interactions. Table 4 lists com-
binations that improve the pharmacokinetic profile of
protease inhibitors. The bioavailability of saquinavir
is less than 20 percent, and up to 18 capsules per day
must be given to achieve effective plasma concentra-
tions. When ritonavir is given with saquinavir, how-
ever, steady-state plasma concentrations of saquinavir
increase by a factor of 20 or more, dramatically im-
proving the oral bioavailability of the drug.22 With
ritonavir 400 mg twice daily, the dose of saquinavir
can be reduced from 1200 mg every eight hours to
400 mg twice daily, decreasing the number of sa-
quinavir capsules that must be taken from 18 to 4 per
day. Similarly, nelfinavir raises plasma saquinavir con-
centrations by a factor of about 12, allowing the dose
of saquinavir to be reduced to 1000 mg twice daily.87

The combination of ritonavir and indinavir can
overcome the unfavorable pharmacokinetic proper-
ties of indinavir. Indinavir must be taken every eight
hours on an empty stomach or with a meal that is
low in fat (<2 g). The trough plasma concentrations
of indinavir are highly variable, and in some patients
the concentrations at the end of the dosing interval
may be below the in vitro concentration needed to
inhibit the replication of 90 percent of HIV isolates
(IC90). Concomitant administration of ritonavir in-
creases the area under the curve by a factor of up to
three and increases the trough plasma concentration
by a factor of three to seven.10,86 This allows for a de-
crease in dosing from three times daily without food
to twice daily with food. Twice-daily regimens of in-
dinavir and ritonavir (800 mg of indinavir and 100
mg of ritonavir, 800 mg of indinavir and 200 mg of
ritonavir, and 400 mg of each) are being evaluated
in patients with HIV infection.88,89 All three regimens
result in higher plasma indinavir concentrations, al-
though the lower doses of ritonavir may be better tol-
erated. In one study, the incidence of renal compli-
cations was low among patients who were given 400
mg of each drug twice a day, and there were no cases
of nephrolithiasis among the 89 patients who re-
ceived this regimen for a mean period of 40 weeks.89

Similarly, the reduction in plasma amprenavir or
saquinavir concentrations produced by efavirenz can
be circumvented by the addition of ritonavir. Efavirenz
markedly decreases the area under the curve for am-
prenavir and saquinavir.55,64 The addition of ritonavir
(200 mg twice daily) to amprenavir and efavirenz
not only prevents the efavirenz-induced reduction,
but also increases the area under the curve for plasma
amprenavir by a factor of two and increases the trough
plasma concentration by a factor of four.90 Plasma
saquinavir concentrations are not affected by efavirenz
in patients who are also taking 400 mg of ritonavir
twice daily.91

Lopinavir, a recently approved protease inhibitor,
relies on the inhibitory effects of ritonavir to achieve
plasma concentrations well above the IC90 value for
wild-type HIV. Low doses of ritonavir increase the
area under the curve for plasma lopinavir by a factor
of 20.92 The trough plasma concentration of tipranavir,
an investigational protease inhibitor, is increased in a
dose-dependent fashion by ritonavir.93

Delavirdine is also an inhibitor of CYP3A4 and can
be given to increase plasma concentrations of pro-
tease inhibitors.94,95 Recent improvement in the for-
mulation (a 200-mg tablet) and studies of twice-daily
dosing make it a possible alternative to ritonavir as a
means of increasing the concentrations of protease
inhibitors.

DRUGS FOR OPPORTUNISTIC INFECTIONS

Azole antifungal drugs, macrolide antibiotics, and
rifamycins have important interactions with other
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drugs, complicating the prophylaxis and treatment of
opportunistic infections (Table 3). Ketoconazole and
itraconazole, which are potent inhibitors of CYP3A4
and moderate inhibitors of P-glycoprotein, can be
given to increase plasma concentrations of protease
inhibitors.34 For example, ketoconazole increases the
area under the curve for plasma saquinavir by 150
percent.96 However, this combination is rarely given
because of concern about the toxicity of ketocona-
zole and the development of resistant fungal infec-
tions. Fluconazole can also inhibit CYP3A4, although
the extent of inhibition and the magnitude of inter-
actions are dose-dependent. Doses of less than 200
mg per day are not associated with important inter-
actions, whereas higher doses can increase plasma con-
centrations of substrates of CYP3A4,97 as well as glu-
curonidated drugs such as zidovudine.98 Fluconazole
also inhibits CYP2C9, as evidenced by its potential
to increase the risk of bleeding in patients also tak-
ing warfarin.99

Erythromycin and clarithromycin are substrates of
CYP3A4 and inhibitors of both CYP3A4 and P-gly-
coprotein.34 Rifampin and rifabutin can substantially

decrease plasma clarithromycin concentrations, but
the clinical importance of the decrease is unknown be-
cause intracellular concentrations of macrolides are
much higher than plasma concentrations.100,101 De-
creased effectiveness against pathogens such as M. avi-
um complex is a potential concern, but no studies
have specifically addressed the clinical effect of the
combination.

Fluconazole increases the area under the curve for
plasma rifabutin by 75 percent.102 This combination
of drugs is more effective in preventing M. avium
complex bacteremia than rifabutin alone, although
there is an increased risk of rifabutin-associated toxic
effects, such as uveitis and arthralgias.103

SPECIAL ISSUES

Alternative Therapies

Alternative therapies, including herbal remedies and
nutritional supplements, have long been considered
harmless. However, certain alternative therapies may
interact with drugs used in the treatment of HIV in-
fection. St. John’s wort decreases the area under the
curve for plasma indinavir by more than 50 percent

*AUC denotes area under the concentration–time curve, and Css plasma concentration in steady
state.

TABLE 4. COMBINATIONS OF DRUGS THAT CAN BE GIVEN TO ACHIEVE OPTIMAL PLASMA 
CONCENTRATIONS OF ANTIRETROVIRAL DRUGS.

AFFECTED DRUG INTERACTING DRUG RESULTS* RECOMMENDATION

Amprenavir Lopinavir–ritonavir Amprenavir AUC increased57 Consider giving amprenavir at 
a dose of 750 mg twice a 
day

Indinavir Ritonavir Indinavir AUC increased by 
a factor of up to 3 and 
trough concentration in-
creased by a factor of 3 to 
710,86

Regimens under evaluation: 
800 mg of indinavir and 
100 mg of ritonavir twice a 
day, 800 and 200 mg twice 
a day, and 400 and 400 mg 
twice a day

Indinavir Delavirdine Indinavir AUC increased by 
a factor of 394

Consider decreasing indinavir 
dose to 600 mg three times 
a day

Indinavir Lopinavir–ritonavir Increased indinavir AUC57 Consider giving indinavir at a 
dose of 600 mg twice a day

Saquinavir Lopinavir–ritonavir Increased saquinavir AUC57 Consider giving saquinavir at 
a dose of 800 mg twice a 
day

Saquinavir Nelfinavir Saquinavir AUC increased by 
a factor of 5 (soft gel cap-
sules) or 12 (hard gel cap-
sules)87

Decrease saquinavir dose to 
800 mg three times a day or 
1000 mg twice a day

Saquinavir Ritonavir Saquinavir Css increased by a 
factor of 20 or more22

Give both drugs at a dose of 
400 mg twice a day; regi-
mens under evaluation: 200 
mg of ritonavir and 800 mg 
of saquinavir twice a day, 
100 and 1000 mg twice a 
day

Saquinavir Delavirdine Saquinavir AUC increased by 
a factor of 595

Consider decreasing the 
saquinavir dose to 800 mg 
three times a day
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in normal subjects, an effect that is due to the in-
duction of CYP3A4 or P-glycoprotein.104-106 Use of
this herb should be avoided in patients taking pro-
tease inhibitors and non-nucleoside reverse-transcrip-
tase inhibitors, because of the risk of viral resistance
to these drugs.

Raw garlic and garlic supplements inhibit the ac-
tivity of CYP3A4 in vitro and in animals.107,108 Severe
gastrointestinal toxicity was reported in two persons
after they ingested garlic supplements with ritona-
vir.109 Other herbs with reported in vitro effects on
cytochrome P-450–mediated drug metabolism in-
clude silymarin (milk thistle), ginseng, and skullcap.110

Clinicians should be aware of these potential inter-
actions, because alternative therapies are not usually
evaluated as a cause of treatment failure or toxicity.

Drug–Cytokine Interactions

Cytochrome P-450 drug metabolism can be al-
tered by certain proinflammatory cytokines such as
interleukin-6, interleukin-1, and tumor necrosis fac-
tor a (TNF-a).111 These cytokines are released dur-
ing periods of stress, trauma, or infection. In several
in vitro studies, interleukin-6 and TNF-a inhibited
cytochrome P-450–mediated metabolism through a
metabolic interaction at the level of transcription of
cytochrome mRNA.112

The administration of immunomodulators such as
interleukin-2 results in a profound release of these
cytokines.113,114 In a study of HIV-infected patients
who were receiving a five-day infusion of interleu-
kin-2, the area under the curve for plasma indinavir
was increased by 75 percent.115

ROLE OF THERAPEUTIC DRUG 

MONITORING

Several studies have established associations between
plasma concentrations of protease inhibitors and their
antiviral effects,116-118 suggesting a role for therapeutic
monitoring of these drugs. Although there is con-
siderable debate regarding the value of drug moni-
toring,119-121 determination of plasma drug concen-
trations may have a role in the evaluation of drug
interactions, provided that the limitations in the use
of plasma drug measurements to evaluate individual
patients are recognized. These limitations include
the large variability in pharmacokinetic characteristics
within individual patients, lack of information on spe-
cific therapeutic ranges and target concentrations (i.e.,
data on the concentrations that cause 50 percent in-
hibition), variations in drug binding to a1-acid glyco-
protein and albumin, slow viral responses to changes
in plasma drug concentrations, and clinical interpre-
tations of measurements.

The clinical utility of therapeutic monitoring of
antiretroviral drugs has yet to be proved, but trials are
ongoing. Adjustments of doses on the basis of plas-
ma drug measurements in cases of drug interactions

should be made with caution pending the outcome of
trials examining the correlations between such meas-
urements and virologic and clinical end points. Any
decision to adjust a dose, whether because of low plas-
ma drug concentrations or drug toxicity, must take
into consideration the wide variability in plasma drug
concentrations in an individual patient, both on a
single day and from one day to the next due to di-
urnal and food effects, the stage of the disease, and
changes in adherence to the treatment regimen.

MANAGEMENT OF DRUG INTERACTIONS

New information about drug interactions in pa-
tients with HIV infection becomes available almost
weekly. The increasing number of documented and
theoretical drug interactions can be overwhelming
for the practicing clinician. Fortunately, extensive ta-
bles and product information are available to aid in the
recognition and management of drug interactions
(Table 5). A thorough drug history, including over-
the-counter drugs and alternative therapies, should
be obtained at each clinic visit. Clinicians should have
a high index of suspicion for a drug interaction in
patients receiving antiretroviral therapy who have an
increased viral load or clinical progression, if other
factors, including adherence, can be ruled out. Inter-
actions should also be suspected in patients with se-
rious toxic effects of antiretroviral or supportive drugs.
Regimens containing many drugs and drugs with a
high potential for interactions (rifamycin, protease
inhibitors, and antifungal drugs) should be reviewed
and assessed for drug interactions. The selection of
a drug that is less likely to interact with other drugs
should be considered if warranted by the clinical cir-
cumstances. For example, azithromycin is not metab-
olized by cytochrome P-450 and does not have the
interactions associated with other macrolide antibi-
otics. Similarly, fluconazole at low doses is less likely
to interact with other drugs than are ketoconazole

TABLE 5. WEB SITES WITH INFORMATION 
ABOUT DRUG INTERACTIONS.

www.dml.georgetown.edu/depts/pharmacology (Department of Pharma-
cology, Georgetown University Medical Center)

www.foodmedinteractions.com (food and drug interactions)

www.hivatis.org (HIV/AIDS Treatment Information Service)

www.hivdent.org (dental information)

hivinsite.ucsf.edu

www.hiv.net (in German)

www.hopkins-aids.edu (Johns Hopkins AIDS Service)

www.iapac.org (International Association of Physicians in AIDS Care)

www.hiv-druginteractions.org (Liverpool HIV Pharmacology Group)

www.medscape.com
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and itraconazole. Therapeutic use of pharmacokinetic
interactions should be considered to simplify com-
plex regimens and reduce the pill burden.

With so many new drugs in clinical development,
drug interactions will continue to be an important
aspect of the treatment of patients with HIV infec-
tion. It is essential that clinicians understand the main
mechanisms and concepts underlying these interac-
tions, so that they can choose regimens for their pa-
tients that are potent, safe, and convenient.

Dr. Gallicano has received research grants from Hoffmann–LaRoche
Canada and Merck.
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