Back grey_arrow_rt.gif
 
 
Two New Studies Back Vitamin D for Cancer Prevention
 
 
  -- Vitamin D Affects the Immune System & Healing Wounds on Skin
 
Researchers Report Levels Needed To Cut Breast, Colon Cancer Risk

 
February 7, 2007
 
By Nancy Stringer
ucsdnews
 
Two new vitamin D studies using a sophisticated form of analysis called meta-analysis, in which data from multiple reports is combined, have revealed new prescriptions for possibly preventing up to half of the cases of breast cancer and two-thirds of the cases of colorectal cancer in the United States. The work was conducted by a core team of cancer prevention specialists at the Moores Cancer Center at University of California, San Diego (UCSD), and colleagues from both coasts.
 
The breast cancer study, published online in the current issue of the Journal of Steroid Biochemistry and Molecular Biology, pooled dose-response data from two earlier studies - the Harvard Nurses Health Study and the St. George's Hospital Study - and found that individuals with the highest blood levels of 25-hydroxyvitamin D, or 25(OH)D, had the lowest risk of breast cancer.
 
The researchers divided the 1,760 records of individuals in the two studies into five equal groups, from the lowest blood levels of 25(OH)D (less than 13 nanograms per milliliter, or 13 ng/ml) to the highest (approximately 52 ng/ml). The data also included whether or not the individual had developed cancer.
 
"The data were very clear, showing that individuals in the group with the lowest blood levels had the highest rates of breast cancer, and the breast cancer rates dropped as the blood levels of 25-hydroxyvitamin D increased," said study co-author Cedric Garland, Dr.P.H. "The serum level associated with a 50 percent reduction in risk could be maintained by taking 2,000 international units of vitamin D 3 daily plus, when the weather permits, spending 10 to 15 minutes a day in the sun."
 
The colorectal cancer study, published online February 6 in the American Journal of Preventive Medicine, is a meta-analysis of five studies that explored the association of blood levels of 25(OH)D with risk of colon cancer. All of the studies involved blood collected and tested for 25 (OH)D levels from healthy volunteer donors who were then followed for up to 25 years for development of colorectal cancer.
 
As with the breast cancer study, the dose-response data on a total of 1,448 individuals were put into order by serum 25(OH)D level and then divided into five equal groups, from the lowest blood levels to the highest.
 
"Through this meta-analysis we found that raising the serum level of 25-hydroxyvitamin D to 34 ng/ml would reduce the incidence rates of colorectal cancer by half," said co-author Edward D. Gorham, Ph.D. "We project a two-thirds reduction in incidence with serum levels of 46ng/ml, which corresponds to a daily intake of 2,000 IU of vitamin D 3. This would be best achieved with a combination of diet, supplements and 10 to 15 minutes per day in the sun."
 
Vitamin D 3 is available through diet, supplements and exposure of the skin to sunlight, or ultraviolet B (UVB). In the paper, the researchers underscored the importance of limiting sun exposure such that the skin does not change color (tan) or burn. For a typical fair-skinned Caucasian individual, adequate vitamin D could be photosynthesized safely by spending 10 to 15 minutes in the noontime sun on a clear day with 50 percent of skin area exposed to the sun. Darker skinned individuals may require more time in the sun, such as 25 minutes. For people with photosensitivity disorders, or anyone with a personal or family history of nonmelanoma skin cancer, any amount of extra sun exposure would be inadvisable.
 
The meta-analysis on colorectal cancer includes data from the Women's Health Initiative, which had shown in 2006 that a low dose of vitamin D did not protect against colorectal cancer within seven years of follow-up. However, the researchers wrote, the meta-analysis indicates that a higher dose may reduce its incidence.
 
"Meta-analysis is an important tool for revealing trends that may not be apparent in a single study," said co-author Sharif B. Mohr, M.P.H. "Pooling of independent but similar studies increases precision, and therefore the confidence level of the findings."
 
The authors recommend further research to study individuals for the effect of vitamin D from sunlight, diet and supplements on the risk of cancer.
 
Vitamin D3 Provides Skin with
Protection from Harmful Microbes
Deficiency in D3 may impact wounds' ability to heal

 
February 9, 2007
 
By Debra Kain
ucsdnews
 
A study by researchers at the UCSD School of Medicine shows that fluctuations in Vitamin D3 levels control the body's innate immune response, affecting a skin wound's ability to heal.
 
Richard L. Gallo, M.D., Ph.D., professor of medicine and chief of UCSD's Division of Dermatology and the Dermatology section of the Veterans Affairs San Diego Healthcare System, says that several unexpected associations between fluctuations of the body's vitamin D3 and infectious disease have emerged in recent investigations.
 
In a study appearing online February 8 in advance of publication in the March issue of the Journal of Clinical Investigation, Gallo and his colleagues look at how the innate immune system is controlled in the skin, and find that genes controlled by active vitamin D3 play an essential role in the process.
 
"Our study shows that skin wounds need vitamin D3 to protect against infection and begin the normal repair process," said Gallo. "A deficiency in active D3 may compromise the body's innate immune system which works to resist infection, making a patient more vulnerable to microbes."
 
Gallo's lab discovered that an antimicrobial peptide called cathelicidin is produced by wounds and is necessary to fight infections. Recently, several studies have begun to link vitamin D to cathelicidin. Researchers focused on white blood cells called macrophages that work to destroy invading bacterial microbes. Macrophages contain toll-like receptors that identify the invaders; when the receptors sense the presence of bacteria, they trigger cathelicidin production.
 
Gallo's team has now discovered that injury stimulates skin cells called keratinocytes, which surround the wound, to increase the production of vitamin D3 and that this in turn increases the expression of genes (CD14 and TLR2) that detect microbes. These genes, together with active vitamin D3, called 1,25D3, then lead to more cathelicidin. In both mice and humans, a deficiency in cathelicidin allows infections to develop more readily.
 
"Our finding - that multiple, diverse genes controlled by 1,25D3 are increased after injury to the skin - suggests that the availability of D3 is essential to the wound. These responses are a previously unrecognized part of the human injury response," said Gallo.
 
Lower concentrations of 1,25D3 in African Americans, likely due to a decreased ability to absorb vitamin D from sunlight, correlate with increased susceptibility to infection. In addition, 1,25D3 has been suggested to be an immune-modifying agent in pulmonary tuberculosis.
 
As a result of this and previous studies, Gallo and his colleagues are beginning clinical trials at UCSD Medical Center with both oral and topical vitamin D3. Normal volunteers, and patients with disorders in antimicrobial peptide production such as atopic dermatitis and acne, are being studied to determine if vitamin D3 can improve their natural immune defenses.
 
Additional contributors to the paper include Jurgen Schauber, Robert A. Dorschner, Alvin B. Coda, Amanda S. Buchau and David Kiken of UCSD's Division of Dermatology and VA San Diego Healthcare System; Philip T. Liu and Robert L. Modlin, Division of Dermatology, David Geffen School of Medicine, UCLA; Yolanda R. Helfrich and Sewon Kang Department of Dermatology, University of Michigan; Hashem Z. Alalieh and Daniel D. BIkle, Department of Medicine, VA Medical Center, UCSF; Andreas Steinmeyer and Ulrich Zugel, Schering AG, Berlin, Gemany
 
The research was sponsored by the National Institutes of Health and the Veterans Administration.
 
New study gives further hope that vitamin D can fight breast cancer
 
http://www1.imperial.ac.uk
 
Vitamin D may help curb breast cancer progression, according to a study published today in the Journal of Clinical Pathology. The authors, from Imperial College London, measured the levels of vitamin D in the blood serum of 279 women with invasive breast cancer. The disease was in its early stages in 204 of the women, and advanced in the remaining 75.
 
The results showed that women with early stage disease had significantly higher levels of vitamin D (15 to 184 mmol/litre) than the women in the advanced stages of the disease (16 to 146 mmol/litre).
 
The authors say that the exact reasons for the disparity are not clear, nor is it known whether the lowered levels of vitamin D among those with advanced disease are a cause or a consequence of the cancer itself. However, the researchers' results, taken together with results from previous studies, lead them to believe that lowered levels of vitamin D may promote the progression of the disease to its advanced stages.
 
Laboratory studies have shown that vitamin D stops cancer cells from dividing and enhances cancer cell death. Vitamin D sufficiency and exposure to sunlight has been shown to reduce the risk of developing breast cancer. The body produces its own vitamin D in the skin when it is exposed to sunlight. The vitamin is also found in certain foods, including eggs and fatty fish.
 
It is known that vitamin D treatment boosts the activity of certain key genes and dampens it down in others. One that is boosted is p21, which has an important role in controlling the cell cycle.
 
Dr Carlo Palmieri , from the Department of Cancer Medicine at Imperial College London and lead author on the paper, said: "This report, while being an observational study, clearly shows that circulating vitamin D levels are lower in advanced breast cancer as compared to early breast cancer. It lends support to the idea that vitamin D has a role in the progression of breast cancer.
 
"The next step in this research is to try and understand the potential causes and mechanisms underlying these differences and the precise consequences at a molecular level. We also need to look at the potential clinical implications of monitoring and maintaining high circulating vitamin D levels in breast cancer patients. By answering these questions we may be able to improve the treatment of women with breast cancer," he added.
 
Alterations In Vitamin D Receptor Gene Increase Prostate, Breast Cancer Risk
 
August 10, 2004
 
Science Daily - PHILADELPHIA Subtle differences in the receptor for vitamin D reverse the anti-cancer action of the sunshine vitamin, increasing the risk of breast cancer in Caucasian women and prostate cancer in African-American men, according to two new studies.
 
The results, in journals published by the American Association for Cancer Research, underscore how naturally-occurring variants of the same gene, called polymorphisms, can have implications for cancer initiation and progression.
 
For example, in the breast cancer study, British scientists at St. George's Hospital Medical School in London found that Caucasian women who carried specific versions of the vitamin D receptor gene, or VDR, not only experienced increased risk for this cancer but may also be more prone to developing metastases.
 
"Differences in the gene sequence for the vitamin D receptor are associated with breast cancer risk and may also be linked to disease progression" said Kay Colston, Ph.D., the senior author of the study, published in the August 15 issue of the journal Clinical Cancer Research. Colston is a Reader in the Department of Cellular and Molecular Medicine at St. George's Hospital Medical School.
 
Among three known variable regions of the VDR gene considered by the research team, the bb and LL variants increased breast cancer risk by almost twofold. The F variant of the gene had no significant effect on breast cancer risk by itself, however when coupled with the LL genotype the risk of breast cancer was increased by a higher factor than the bb or LL genotypes alone. In addition, there was a higher proportion of women with this 'at risk' genotype in a sub-group of patients who developed metastatic disease.
 
A second study, conducted independently, linked a similar change in the vitamin D receptor (VDR) with amplified risk of prostate cancer for African American men. That study appeared in the August issue of Cancer Epidemiology, Biomarkers & Prevention, a sister publication to Clinical Cancer Research.
 
Intriguingly, the F variant that increases the chance of developing breast cancer when associated with other VDR variants also contributes to increased risk and aggressiveness of prostate cancer in African-American men, according to the Cancer Epidemiology, Biomarkers & Prevention article.
 
This study reported that men with two copies of the F variant almost doubled the risk for prostate cancer developing in African-Americans, but not Caucasians. Furthermore, the same men had twice the risk for developing high grade advanced prostate cancer, according to the research.
 
"More African-American prostate cancer patients carried the homozygous FF variant of the vitamin D receptor than African American men who did not have prostate cancer," said Alice S. Whittemore, Ph.D., the senior author of the paper. Whittemore, who conducts cancer research in the department of Health Research and Policy, the Stanford University School of Medicine, led a multi-institutional team of cancer scientists from Stanford University, the University of Southern California, the University of Hawaii, the British Columbia Cancer Agency and the Northern California Cancer Center.
 
Neither the b nor L gene variants that altered risk in Caucasian women in the British study contributed to elevated risk for prostate cancer among men.
 
Funding for the prostate cancer studies came from NIH grant CA67044. The UK breast cancer study was funded by Breast Cancer Campaign and the World Cancer Research Fund.
 
Vitamin D Status More Important Than High Calcium Intake for Calcium Metabolism
 
......The goal of our study was to investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis in healthy adults, as determined by serum intact PTH.
 
Calcium intake levels of more than 800 mg/day may be unnecessary for maintaining calcium metabolism if vitamin D status is adequate, according to a study.
 
However, high calcium intake levels may have other beneficial effects not addressed in this study or reflected by serum PTH levels, including protective effects in the gut lumen against colon polyp formation
 
Mean (SD) vitamin D intake levels were significantly higher in the group taking supplements compared with nonsupplement users.....

 
Newswise - Calcium intake levels of more than 800 mg/day may be unnecessary for maintaining calcium metabolism if vitamin D status is adequate, according to a study in the November 9 issue of JAMA.
 
The importance of adequate vitamin D status for optimum bone health has received increased recognition in recent years, with higher recommended intake levels being proposed by some investigators, according to background information in the article. The ideal intake is not known, and different criteria have been proposed for estimating population requirements. Serum 25-hydroxyvitamin D has been the generally accepted indicator of vitamin D status, but no universal consensus has been reached regarding which serum values constitute sufficiency. An inverse relationship between serum 25-hydroxyvitamin D and serum parathyroid hormone (PTH) is well established. Parathyroid hormone is a major hormone maintaining normal serum concentrations of calcium and phosphate and is itself regulated through levels of calcitriol and serum calcium. An insufficiency of vitamin D or calcium is generally associated with an increase in PTH.
 
Laufey Steingrimsdottir, Ph.D., of Landspitali-University Hospital, Reykjavik, Iceland, and colleagues conducted a study to determine the importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis (metabolic equilibrium) in healthy adults, as determined by serum intact PTH.
 
The study included 2,310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (less than 800 mg/d, 800-1200 mg/d, and greater than1200 mg/d) and serum 25-hydroxyvitamin D level (less than 10 ng/mL, 10-18 ng/mL, and greater than 18 ng/mL). A total of 944 participants completed the dietary questionnaire.
 
The researchers found that after adjusting for relevant factors, serum intact PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (less than 10 ng/mL), calcium intake of less than 800 mg/d vs. more than 1200 mg/d was significantly associated with higher serum PTH; and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups.
 
"The significance of our study was demonstrated by the strong negative association between sufficient serum levels of 25-hydroxyvitamin D and PTH, with calcium intake varying from less than 800 mg/d to more than 1200 mg/d. Our results suggest that vitamin D sufficiency can ensure ideal serum PTH values even when the calcium intake level is less than 800 mg/d, while high calcium intake (greater than 1200 mg/d) is not sufficient to maintain ideal serum PTH, as long as vitamin D status is insufficient," the authors write.
 
"Although a cross-sectional study such as our study is not sufficient to demonstrate causality, the association between vitamin D status, calcium intake, and the interaction between these 2 with serum PTH levels is a strong indication of the relative importance of these nutrients," the researchers write. "Although ideal intakes of these 2 nutrients need to be further defined in more elaborate studies, there is already sufficient evidence from numerous studies for physicians and general practitioners to emphasize to a much greater extent the importance of vitamin D status and recommend vitamin D supplements for the general public, when sun exposure and dietary sources are insufficient."
 
"In conclusion, our study suggests that vitamin D sufficiency may be more important than high calcium intake in maintaining desired values of serum PTH. Vitamin D may have a calcium sparing effect and as long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary to ensure adequate vitamin D status for most of the year in northern climates."
 
Relationship Between Serum Parathyroid Hormone Levels, Vitamin D Sufficiency, and Calcium Intake
 
Laufey Steingrimsdottir, PhD; Orvar Gunnarsson, MD; Olafur S. Indridason, MD, MHS; Leifur Franzson, MSc, Pharm; Gunnar Sigurdsson, MD, PhD
 
JAMA. Nov 9, 2005;294:2336-2341.
 
INTRODUCTION
The importance of adequate vitamin D status for optimum bone health has received increased recognition in recent years, with higher recommended intake levels being proposed by some investigators.1-3 The ideal intake is not known, and different criteria have been proposed for estimating population requirements. Serum 25-hydroxyvitamin D has been the generally accepted indicator of vitamin D status, but no universal consensus has been reached regarding which serum values constitute sufficiency.4-5 A further difficulty in assigning a universal reference value may lie in the interrelationship between several factors influencing calcium homeostasis, not the least being the 2 nutrients vitamin D and calcium.
 
An inverse relationship between serum 25-hydroxyvitamin D and serum parathyroid hormone (PTH) is well established, up to a certain level of 25-hydroxyvitamin D, in which little further decrease in serum PTH is observed. The serum level for 25-hydroxyvitamin D corresponding with the PTH inflection point has been interpreted as indicative of optimal calcium homeostasis and proposed as a marker of vitamin D sufficiency.5-6 However, this approach to defining recommended vitamin D intake has been disputed, partly because there is considerable variation in the level of 25-hydroxyvitamin D associated with any given serum PTH concentration, and reported threshold levels have varied greatly from 8 to 44 ng/dL.7-8 This wide range may be in part due to different methods for measuring both serum PTH and 25-hydroxyvitamin D and defining baseline levels,9 and possibly also due to different calcium intakes in study populations since serum calcium regulates PTH release.10 The interrelationship between calcium intake and vitamin D requirements has not been addressed adequately in the past.
 
The goal of our study was to investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis in healthy adults, as determined by serum intact PTH.
 
ABSTRACT
Context: Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached.
 
Objective: To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH).
 
Design, Setting, and Participants: Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL).
 
Main Outcome Measure: Serum intact PTH as determined by calcium intake and vitamin D.
 
Results: A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04).
 
Conclusions: As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates.
 
COMMENT
 
Our study examined calcium intake and serum levels of 25-hydroxyvitamin D with respect to optimal serum PTH. Parathyroid hormone is a major hormone maintaining normal serum concentrations of calcium and phosphate and is itself regulated through levels of calcitriol and serum calcium. An insufficiency of vitamin D or calcium is generally associated with an increase in PTH, but to our knowledge the relative importance of each nutrient to this process has not been addressed previously.
 
Our study was performed in a healthy adult population, living at a northern latitude (64‹ North), where sufficient sunshine for cholecalciferol biosynthesis is limited to the spring to autumn months. The study by Webb et al14 demonstrated the effect of latitude on vitamin D biosynthesis, with no synthesis occurring due to sun exposure from December to February in Boston, Mass (42‹ North) and from November to March in Edmonton, Alberta, Canada (52‹ North). Our results point to a situation close to that in Edmonton, with serum 25-hydroxyvitamin D reaching its lowest values during the 2-month period from February to March. However, supplement use is common in this population, with 60% of our sample taking either cod-liver oil or vitamin D supplements regularly. The traditional use of cod-liver oil, which contains a high concentration of vitamin D, is especially common in older age groups in Iceland, accounting for higher mean intake levels in that age group.13, 15 Calcium intake is also relatively high in our sample, especially in older people, reflecting the common dietary pattern in Iceland and traditional use of milk products as verified in a recent national nutrition survey.15 In spite of the high mean intake levels, there is considerable variation in both nutrients, allowing for the division of the sample into 3 groups of calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d), as well as 3 groups of serum 25-hydroxyvitamin D (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL).
 
The significance of our study was demonstrated by the strong negative association between sufficient serum levels of 25-hydroxyvitamin D and PTH, with calcium intake varying from less than 800 mg/d to more than 1200 mg/d. Our results suggest that vitamin D sufficiency can ensure ideal serum PTH values even when the calcium intake level is less than 800 mg/d, while high calcium intake (>1200 mg/d) is not sufficient to maintain ideal serum PTH, as long as vitamin D status is insufficient. This is further reflected in ionized calcium levels that were dependent on serum 25-hydroxyvitamin D levels but not on calcium intake. High calcium intake does, however, ameliorate the increase in serum PTH that accompanies vitamin D insufficiency and does permit somewhat lower serum 25-hydroxyvitamin D levels for maintaining ideal serum PTH.
 
Although a cross-sectional study such as our study is not sufficient to demonstrate causality, the association between vitamin D status, calcium intake, and the interaction between these 2 with serum PTH levels is a strong indication of the relative importance of these nutrients. However, intervention studies are needed to further address this issue.
 
A limitation of our study may be the use of a semi-quantitative food frequency questionnaire method for assessing nutrient intake; as such, this method can be of limited validity or accuracy. However, our method was specially designed to measure calcium and vitamin D intake and has been shown to be of good validity and accuracy for most major nutrients, including calcium and vitamin D, compared with repeated 24-hour recalls or by associating serum 25-hydroxyvitamin D with vitamin D intake during winter (r = 0.7).11-13
 
Another limitation of our study is our single fasting measurement of serum PTH, which does not give an accurate portrayal of the calcium economy. Although a 24-hour integrated serum PTH would certainly be a better measure and manifesting the full effect of absorptive calcemia, such an effort is not feasible in a large study population. Similarly, our determination of serum 25-hydroxyvitamin D relied on a single measurement. In our study, serum PTH values seemed to level off at a serum 25-hydroxyvitamin D level of approximately 18 ng/mL, irrespective of calcium intake, and no statistically significant decrease was observed with increased serum 25-hydroxyvitamin D levels (>18 ng/mL). Different authors have reported different serum 25-hydroxyvitamin D levels for the inflection point of serum PTH and in some studies levels of more than 18 ng/mL are reported to be within the region of the curve.6-8,16 It has even been reported that no such value may exist.17 It is quite possible that serum PTH levels continue to decrease in response to serum 25-hydroxyvitamin D levels of more than 18 ng/mL; however, this was not evident from our study. Indeed, our study indicated that this curve may be dependent on calcium intake, which in turn may explain the differences observed between studies.
 
Although our data are based on a healthy subsample of the original random sample of the population, all analyses were also performed on the total group of participants, including those individuals with diseases or taking medications that affected calcium metabolism. Similar results were obtained from that larger group in all respects, demonstrating that a possibly distorted study group did not contribute to our results.
 
Our results are supported by the study of Kinyamu et al,18 which showed that serum PTH concentration is inversely associated with calcium intake derived from vitamin D-fortified milk, but not calcium from other sources. It has also been postulated that high calcium intake may have a vitamin D-sparing effect, possibly through suppressed serum PTH and decreased 1,25-dihydroxyvitamin D. Similarly a low calcium intake has been proposed to aggravate vitamin D deficiency through increased catabolism of 25-hydroxyvitamin D.19-20 The inverse hypothesis, however, that sufficient vitamin D may have a calcium-sparing effect has not to our knowledge been addressed previously.
 
Although the importance of preventing undue increases in serum PTH for bone health is generally recognized, evidence is lacking for identifying the exact levels that may be detrimental. However, secondary hyperparathyroidism is considered to play a significant role in the pathogenesis of age-related bone loss.21-22 Also, it is well recognized that serum PTH is the principal systemic determinant of bone remodelling, which itself is a risk factor for fractures irrespective of bone balance.23 Although sufficient intake of both nutrients is certainly important, our study indicates that as long as vitamin D status is secured by vitamin D supplements or sufficient sunshine, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium homeostasis. However, high calcium intake levels may have other beneficial effects not addressed in this study or reflected by serum PTH levels, including protective effects in the gut lumen against colon polyp formation.24 It has been shown that large amounts of calcium are needed to meet body requirements in the absence of much active calcium transport in the gut, as in vitamin D insufficiency.25 Our findings that serum PTH differs by calcium intake, only in those individuals with low vitamin D status, are most likely explained by less active transport of calcium.
 
In our sample population, an average intake of 500 IU/d of vitamin D corresponded with a mean serum 25-hydroxyvitamin D level of more than 18 ng/mL throughout the year but approximately 700 IU/d was required during winter. This is a comparable value with the levels recently recommended by several authors.1-3 Although ideal intakes of these 2 nutrients need to be further defined in more elaborate studies, there is already sufficient evidence from numerous studies1-3,6, 16-17,26-28 for physicians and general practitioners to emphasize to a much greater extent the importance of vitamin D status and recommend vitamin D supplements for the general public, when sun exposure and dietary sources are insufficient.
 
In conclusion, our study suggests that vitamin D sufficiency may be more important than high calcium intake in maintaining desired values of serum PTH. Vitamin D may have a calcium-sparing effect and as long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary to ensure adequate vitamin D status for most of the year in northern climates.
 
METHODS
 
Participants

A total of 2310 men and women were divided equally between 3 age groups (30-45 years, 50-65 years, and 70-85 years), identified by a stratified, random selection process from the computerized population register of Reykjavik, the capital of Iceland, and invited to participate in our cross-sectional study on bone health. In the preparatory phase of the study, we determined the sample size to have 80% power to detect a 20% difference in key bone factors between groups of 100 patients, at the = .05 significance level, presuming an SD of half the mean for the factor. With a 65% to 70% expected participation rate and after exclusions for various conditions, we predicted that the total of 2310 participants would be needed for invitation to the study. Women outnumbered men in the sample (n = 1370 and n = 940, respectively) because a greater proportion of women were expected to be excluded from the study due to hormonal use. The recruitment period was from February 2001 to January 2003, with an equal number of participants from each age group recruited monthly throughout the 2-year period to account for seasonal effects. The participants answered a detailed questionnaire on health-related issues, height and weight were measured, and body mass index (BMI) was calculated as weight in kilograms divided by the square of height in meters. The Icelandic Medical Ethics Committee approved the study, and all participants provided a written consent form.
 
Dietary Assessment
Vitamin D and calcium intake were assessed by using a self-administered, semi-quantitative food frequency questionnaire, which was developed by the Icelandic Nutrition Council.11 The questionnaire is designed to assess the entire diet, including supplements, over the previous 3-month period. It has been described and used in several studies and validated for foods and nutrients, including both calcium and vitamin D, and repeated 24-hour recalls were used as the reference method.12 Vitamin D intake assessed by this method has also been validated using serum 25-hydroxyvitamin D as a biomarker in adult women not exposed to sunlamps in winter (r = 0.7, P<.001).13
 
Biochemistry
After overnight fasting, blood was drawn between 8 and 10 AM, and serum 25-hydroxyvitamin D levels were measured using radioimmunoassay (DiaSorin, Stillwater, Minn). Interassay variations were 6.9% and 8.5% for serum 25-hydroxyvitamin D levels of 14.8 and 50.8 ng/dL, respectively. Intact serum PTH was measured using an immunoassay (ElectroChemiLuminscence Immuno Assay, Elecsys 2010, Roche Diagnostics, Tenzberg, Germany). Interassay variation was 2.9% for a serum PTH level of 68.0 pg/mL. Serum cystatin C was measured by an immunoturbidimetric assay (DakoCytomation, Copenhagen, Denmark), and serum ionized calcium was measured by an ion-specific electrode (ABL 700, Radiometer, Copenhagen, Denmark); coefficient of variation was 1.0% and 2.2% for serum ionized calcium levels of 4.12 and 6.40 mg/dL (1.03 and 1.60 mmol/L), respectively.
 
Data Analysis
We used analysis of variance (ANOVA) to compare the 3 age groups with respect to continuous variables, applying the Bonferroni method to control for multiple comparisons. Two groups based on supplement use were compared using analysis of covariance (ANCOVA). Participants were divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d), and according to serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). Our main analysis by ANCOVA was to study the relationship between serum intact PTH levels and both calcium intake and serum 25-hydroxyvitamin D levels, with and without the interaction between calcium intake and vitamin D status in the model. Calcium intake groups and 25-hydroxyvitamin D groups were fixed factors, and variables known to be associated with PTH levels were entered as covariates, which included the continuous variables age, BMI, and cystatin C (as a measure of kidney function, independent of muscle mass and sex), and the categorical variables sex (male/female) and smoking (yes/no). We also tested for interaction between vitamin D status or calcium intake and the categorical variables smoking and sex, but these were not significant. For subsequent subgroup comparisons, we used Bonferroni adjustment for multiple comparisons. Groups were compared with regard to serum ionized calcium using ANOVA and the Bonferroni adjustment. Data are presented as mean (SD), unless otherwise noted. Statistical analysis was performed by using SPSS version 11.5 (SPSS Inc, Chicago, Ill). P<.05 was considered statistically significant.
 
RESULTS
 
A total of 1630 (70.7%) of 2310 individuals from the initial invited sample participated in the study; all were white. For our analysis, 625 participants were excluded because of diseases or medications thought to affect calcium metabolism, which included hormone therapy (n = 304), thiazide diuretics (n = 203), prednisolone (n = 35), bisphosphonates (n = 40), tamoxifen (n = 18), phenytoin (n = 5), major gastrointestinal surgery (n = 28), and primary hyperparathyroidism (n = 21); some participants were taking more than 1 medication. In addition, 61 participants were excluded because they failed to complete the dietary questionnaire. After all exclusions, 944 healthy participants remained who had completed all parts of the study (491 women; mean [SD] age, 53.7 [16.1] years; and 453 men; mean [SD] age, 57.9 [14.3] years).
 
Mean (SD) values for vitamin D and calcium intake, serum 25-hydroxyvitamin D, serum PTH, serum cystatin C, and serum ionized calcium in the 3 age groups are presented in the Table. All parameters were significantly higher in the oldest age group (70-85 years) compared with the youngest age group (30-45 years). Although mean intake of calcium and vitamin D were above recommended levels in all age groups, there was great variation in individual intake, especially for vitamin D.
 
Figure 1 presents mean serum 25-hydroxyvitamin D at 2-month intervals throughout the year for 2 groups (those participants taking vitamin D supplements or cod-liver oil regularly [n = 562] and those not taking supplements [n = 382]). Mean (SD) vitamin D intake levels were significantly higher in the group taking supplements compared with nonsupplement users (728 [372] vs 208 [200] IU/d; P<.001, ANOVA with no covariates; 1 ƒĘg corresponding to 40 IU of vitamin D), and was reflected in higher serum 25-hydroxyvitamin D levels, especially during the winter months, where mean (SD) levels decreased to 11.5 (5.5) ng/mL from February to March in those individuals not taking supplements but remained at 18.7 (8.1) ng/mL in the group taking supplements. Peak values during summer months, June to July, differed less between the groups but stayed nevertheless higher in supplement users at 22.4 (6.9) ng/mL compared with 18.3 (9.3) ng/mL in nonsupplement users. The difference in serum 25-hydroxyvitamin D levels between supplement and nonsupplement users was statistically significant (P<.001, ANCOVA controlling for season). In addition, serum PTH levels were significantly lower in supplement users compared with nonsupplement users (adjusted means, 36.9 vs 39.5 pg/mL; P = .02, ANCOVA controlling for age, sex, smoking, BMI, and cystatin C). As expected, we found an inverse relationship between serum 25-hydroxyvitamin D and serum PTH levels; however, at serum 25-hydroxyvitamin D levels of more than 18 ng/mL, this relationship became statistically nonsignificant and only minor decrements in serum PTH levels were observed with serum 25-hydroxyvitamin D levels of more than 18 ng/mL. We therefore used a serum 25-hydroxyvitamin D level of 18 ng/mL to define vitamin D sufficiency.
 
In our main analysis, which examined factors in the model without the interaction term, vitamin D status was significantly associated with serum PTH (P<.001), whereas the calcium intake group was not (P = .28). In the model with the interaction term, both vitamin D status (P<.001), calcium intake group (P = .02), and the interaction between the 2 (P = .01) were significantly associated with serum PTH levels, as were all the covariates (all P.001). Figure 2 shows the adjusted means from the latter model for serum PTH according to serum 25-hydroxyvitamin D in the 3 calcium intake groups. The lowest serum PTH levels were observed in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL, with a small difference between the calcium intake groups, whereas the highest serum PTH was observed in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. In this group, serum PTH levels were highest in the low calcium group. Thus, Figure 2 and the overall statistical model indicated a strong association between vitamin D status and serum PTH, whereas the effect of calcium intake may be most important in the low vitamin D status group.
 
Further analysis of differences between subgroups was therefore limited to comparing the lower 2 calcium intake groups with the highest one within the lowest vitamin D status group, and the lower vitamin D status groups to the highest one within the highest calcium intake group. This was performed by using ANCOVA, adjusting for covariates and applying the Bonferroni method for multiple comparisons (total of 4 comparisons). At the low serum 25-hydroxyvitamin D level, there was a significant difference in serum PTH according to calcium intake. Serum PTH was significantly higher when the calcium intake level was less than 800 mg/d compared with more than 1200 mg/d (P = .04, ANCOVA with Bonferroni correction), whereas the serum PTH levels of those individuals with a calcium intake of between 800 and 1200 mg/d were not significantly different from those individuals with a level of more than 1200 mg/d. Within the highest calcium intake group, there was a significant difference between the lowest and the highest vitamin D groups (P=.04, ANCOVA with Bonferroni correction), whereas the difference between the middle and the highest groups was nonsignificant.
 
Mean serum ionized calcium was slightly but significantly lower in the group with the lowest serum 25-hydroxyvitamin D level compared with the highest group (4.908 vs 4.964 mg/dL [1.227 vs 1.241 mmol/L]; P = .01, ANOVA with Bonferroni adjustment for 6 comparisons). There was no significant difference in ionized calcium between the calcium intake groups, and the interaction between calcium intake and vitamin D sufficiency groups was not statistically significant. The lowest ionized calcium level was observed in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL and calcium intake of less than 800 mg/d, or 4.72 mg/dL (1.18 mmol/L).
 
When all analyses above were performed on all 1630 participating individuals, including those excluded because of medications or diseases, similar results were obtained.
 
 
 
 
  icon paper stack View Older Articles   Back to Top   www.natap.org