Liver Disease in the HIV–Infected Individual

JENNIFER C. PRICE* and CHLOE L. THIO‡

*Division of Gastroenterology and Hepatology and ‡Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland

MANAGING LIVER DISEASE

Since the advent of effective antiretroviral therapy (ART) for human immunodeficiency virus-1 (HIV), there has been a substantial decrease in deaths related to acquired immunodeficiency syndrome (AIDS). However, in the ART era, liver disease is now the most common non-AIDS–related cause of death among HIV-infected patients, accounting for 14%–18% of all deaths in this population and almost half of deaths among hospitalized HIV-infected patients. Just as the burden of non-AIDS morbidity and mortality has changed in the ART era, the types of liver disease the clinician is likely to encounter among these patients have changed as well. This review will discuss the causes of liver disease in the HIV-infected population in the ART era, including chronic hepatitis C virus, chronic hepatitis B virus, medication-related hepatotoxicity, alcohol abuse, nonalcoholic fatty liver disease, and AIDS-related liver diseases.

Keywords: Human Immunodeficiency Virus; Liver Disease; Hepatitis C Virus; Hepatitis B Virus.

Managing liver disease is an increasingly important component to the care of individuals infected with human immunodeficiency virus-1 (HIV). Since the advent of effective antiretroviral therapy (ART) for HIV, there has been a substantial decrease in deaths related to acquired immunodeficiency syndrome (AIDS). However, liver disease has emerged as the most common non-AIDS–related cause of death among HIV-infected patients, accounting for 14%–18% of all deaths. In some series, nearly half of deaths among hospitalized HIV-infected patients in the ART era have been attributed to liver disease.

Just as the burden of non-AIDS morbidity and mortality has changed in the ART era, the types of liver disease the clinician is likely to encounter among these patients have also changed. Before ART, the most common causes of liver dysfunction in HIV-infected patients were opportunistic infections, including cytomegalovirus (CMV) and mycobacterium infections, and AIDS-related neoplasms such as lymphoma and Kaposi’s sarcoma (KS). Since the ART era, however, the spectrum of liver disease among HIV-infected individuals has shifted to concomitant infection with chronic HCV, chronic HBV, medication-related hepatotoxicity, alcohol abuse, and nonalcoholic fatty liver disease (NAFLD) (Table 1).

This review will focus on the major causes of liver disease in the HIV-infected population in the ART era and will briefly review liver disease in persons with AIDS.

Viral Hepatitis
Hepatitis C Virus

Most liver disease among HIV-infected individuals is secondary to coinfection with HCV and/or HBV. Because of shared risk factors, coinfection with HCV and HIV is common. Reported prevalence rates of HIV-HCV coinfection vary depending on the route of HIV transmission, from 10% among those with high-risk sexual behavior to 90% with injection drug use. Overall, approximately 30% of HIV-infected individuals in the United States and Europe are coinfected with HCV.

HIV infection alters the natural history of HCV in several ways. HIV-infected patients who are acutely infected with HCV are half as likely as HIV-uninfected individuals to clear HCV viremia. Coinfected individuals also have higher HCV RNA levels, accelerated progression to hepatic fibrosis, an increased risk of developing cirrhosis, and a higher risk of decompensated liver disease once cirrhotic. In a meta-analysis of 8 studies, HIV-HCV coinfected subjects had a 2-fold increased risk of histologic cirrhosis and 5-fold increased risk of decompensated liver disease compared with HCV-monoinfected individuals. Studies of the role of HCV on the natural history of HIV have been conflicting. However, in a recent analysis of 1428 HIV-HCV coinfected individuals treated for HCV, patients who achieved sustained virologic response had lower rates of HIV progression and nonliver mortality after adjusting for fibrosis, Centers for Disease Control and Prevention clinical category, and nadir CD4 count.

Given both the high prevalence of HCV among the HIV-infected population and the impact of HIV on HCV-related liver disease, the clinician is likely to encounter these patients frequently. This review will discuss the causes of liver disease in the HIV-infected population in the ART era and will briefly review liver disease in persons with AIDS.
disease progression, all HIV-infected patients should be tested for chronic HCV infection by using third-generation enzyme immunoasays, followed by quantitative HCV RNA testing if positive. Although third-generation immunoasays are highly sensitive, even in the setting of HIV infection (>99%), HCV RNA should be checked in patients with significant risk factors for HCV and advanced immunosuppression or in whom acute infection is suspected. During the past decade, outbreaks of sexually transmitted HCV among noninjection-drug–using men who have sex with men have been reported in Europe, the United States, and Australia; men who have sex with men should therefore be considered at risk for acquiring HCV. Because there is no available vaccine to prevent HCV infection, HIV-infected individuals who test negative for HCV should be counseled to avoid risk factors for HCV infection. For individuals who test positive for HCV, the extent of liver disease should be determined. Aminotransferase levels are not sensitive for fibrosis in the setting of HIV infection; therefore, liver biopsy remains the preferred modality for staging disease among coinfected patients.

Because of the limitations and invasiveness of liver biopsy, noninvasive methods to determine liver disease are being actively investigated and are becoming a viable alternative to liver biopsy. A variety of laboratory markers have been studied as potential surrogates for hepatic fibrosis; most were derived from studies in individuals without HIV infection. A meta-analysis of studies of the markers in the HIV-HCV coinfected population suggested that they might be useful in excluding cirrhosis if used at their most sensitive thresholds; however, their diagnostic odds ratios were suboptimal. Transient elastography (TE) uses ultrasound technology to estimate liver stiffness by measuring elastic shear wave velocity through the liver. In a study of 169 HIV-HCV coinfected patients, TE accurately detected significant fibrosis and cirrhosis but was less accurate in discriminating mild from significant fibrosis.

The decision to treat HCV in the HIV-infected patient should be made on an individual basis, because the benefits must be weighed against safety and efficacy concerns. HCV treatment should be prioritized in coinfected patients without decompensated cirrhosis who have a liver biopsy revealing portal fibrosis or more advanced disease. Women of child-bearing age might desire treatment before becoming pregnant, because pregnancy must be avoided during and 6 months after anti-HCV therapy because of ribavirin teratogenicity. Because they usually have favorable treatment responses, patients with HCV genotype 2 or 3 who are motivated and can tolerate treatment should be offered it regardless of liver disease stage. Certain IL28B genotypes respond well to treatment and so might also become an indication to treat without liver disease staging. Early treatment of acute HCV infection has also been associated with improved response rates in HIV-infected individuals. Patients with decompensated cirrhosis should be referred to a liver transplant center with experience in transplantation with HIV infection.

The current Food and Drug Administration–approved treatment for HCV in the setting of HIV infection is pegylated interferon alfa and ribavirin, which is the standard of care based on 4 large randomized trials. This regimen is less effective in HIV-infected patients, with sustained virologic response rates ranging from 14%–38% among those with HCV genotype 1 infection and 44%–73% among genotype 2 and 3 infections. Similar to HCV-monoinfected individuals, genotype, baseline HCV RNA, and early response to therapy are predictors of treatment response. In patients receiving HCV treatment, didanosine (ddI) is contraindicated and zidovudine is not recommended, because ribavirin potentiates the risk of mitochondrial toxicity and anemia, respectively. stavudine should also be avoided in patients receiving HCV treatment because of the risk of steatosis. Abacavir has been associated with decreased SVR, possibly as a result of competition with ribavirin because both are guanosine analogues. However, this competitive interaction appears to be insignificant when weight-based ribavirin dosing is used.

Although HCV-infected patients have a higher incidence of ART-related liver toxicity, this infrequently leads to ART discontinuation, and the benefits of ART for HIV treatment are

Table 1. Differential Diagnosis of Liver Disease in HIV Infection in the ART Era

<table>
<thead>
<tr>
<th>Hepatic parenchymal disease</th>
<th>Infection</th>
<th>Viral hepatitis: HCV, HBV, HDV, HAV, HEV, CMV, EBV, HSV, VZV, HHV-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mycobacterium avium complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptococcus neoformans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsporidia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pneumocystis jiroveci</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacillary peliosis hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Histoplasma capsulatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAFLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medication toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alcoholic liver disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recreational drugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cocaine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methylenedioxymethamphetamine (Ecstasy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neoplasm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoimmune hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemochromatosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilson’s disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alpha-1 antitrypsin deficiency</td>
</tr>
<tr>
<td>Biliary disease</td>
<td></td>
<td>AIDS cholangiopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptosporidium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsporidosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyclospora cayetanensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mycobacterium avium intracellulare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Histoplasma capsulatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acalculous cholecystitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptosporidium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isospora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsporidosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neoplasm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS</td>
</tr>
</tbody>
</table>

EBV, Epstein–Barr virus; HHV–6, human herpesvirus 6; HSV, herpes simplex virus; VSV, varicella-zoster virus.
Once HIV-HBV coinfection is diagnosed, staging of liver disease is important but challenging. Although serum alanine aminotransferase levels are lower in coinfected patients, this correlates poorly with liver disease.48 Noninvasive measures of hepatic fibrosis have not been well-studied in HIV-HBV coinfection; therefore, liver biopsy remains the gold standard for disease staging.

The decision to initiate HBV treatment depends on whether the patient meets indications to treat either the HIV or HBV. Treatment regimens for either virus must consider both infections, because many antiviral agents have dual activity, including tenofovir, lamivudine, emtricitabine, entecavir, and adefovir at doses >10 mg.54 Treatment for HBV is indicated in any patient with cirrhosis and detectable HBV DNA. Although a specific HBV DNA threshold for treatment in the absence of cirrhosis has not been determined, treatment should be considered in patients with HBV DNA ≥2000 IU/mL and more than mild liver disease on biopsy.54

If there is no indication to treat either infection, the patient should be monitored closely. If treatment is indicated for either HIV or HBV, ART should be initiated and should include the combination of tenofovir and emtricitabine (Truvada) or tenofovir and lamivudine.55 If tenofovir is contraindicated, entecavir can be used with the ART regimen, but then lamivudine or emtricitabine should be avoided because of overlapping resistance patterns.47 For patients requiring treatment for HBV but in whom ART is not feasible, options are limited by the need to avoid agents with anti-HIV activity to prevent development of drug-resistant HIV. In these patients, pegylated interferon alfa and adefovir 10 mg can be considered. Telbivudine is also a consideration, but some in vivo studies show declines in HIV RNA without emergence of drug-resistant HIV. Elevated ALT and AST during the course of ART might be due to a variety of potential causes including medications, drug-resistant HBV, HBV reactivation in the setting of medication withdrawal (especially with lamivudine withdrawal due to HIV resistance via the M184V mutation), loss of HBeAg, or the immune reconstitution inflammatory syndrome (IRIS).

Screening for HCC among individuals with HIV-HBV coinfection should follow American Association for the Study of Liver Disease guidelines recommending screening for all cirrhotic HBV carriers and for certain groups of noncirrhotic carriers.46 The hepatitis A vaccine should also be provided to individuals without hepatitis A immunity.

Medication Toxicity
Antiretroviral Therapy–Related Medication Toxicity

Liver toxicity is one of the most common serious adverse events associated with ART.37 The clinical presentation can range from mild asymptomatic increases in serum transaminases to overt liver failure.58 In retrospective studies, the incidence of ART-related severe hepatotoxicity is approximately 10%, and life-threatening events occur at a rate of 2.6 per 100 person-years.59,60

There are 4 primary mechanisms by which ART can lead to liver damage: direct drug toxicity and/or drug metabolism, hypersensitivity reactions, mitochondrial toxicity, and IRIS.40,61 IRIS is characterized by the paradoxical worsening of preexisting infectious diseases as a result of rapid immune restoration
in the setting of successful HIV RNA suppression. The syndrome generally manifests within the first 2 months of ART initiation and is accompanied by a precipitous decline in HIV RNA and rise in CD4 count. In patients with viral hepatitis, immune restoration can lead to clinical hepatitis as a result of the immune response to the virus. There have been case reports of clinical flares of HBV in the setting of ART initiation, even with regimens including anti-HBV activity, and of rapidly progressive HCV-related cirrhosis associated with ART-related immune restoration.62,63

Coinfection with HBV or HCV has consistently been associated with increased risk of ART-related hepatotoxicity.57,60 Other risk factors associated with ART-related liver injury include preexisting advanced fibrosis, pretreatment elevated ALT or AST, alcohol abuse, older age, female gender, first exposure to ART, significant increase in CD4 cell count after ART initiation, concomitant tuberculosis medications, and cocaine use.60,61,64

Although all antiretroviral drugs have some risk of hepatotoxicity, some are implicated more than others, and classes of drugs have characteristic patterns of injury (Table 2). The non-nucleoside reverse transcriptase inhibitors (NNRTIs) typically cause either hypersensitivity reactions or direct drug toxicity and therefore have 2 peaks of onset, within days to weeks or several months after initiation.60 Nevirapine (NVP) is the NNRTI most associated with hepatotoxicity, although hyper-

<table>
<thead>
<tr>
<th>Medication</th>
<th>Typical dose</th>
<th>Dose adjustment for hepatic insufficiency</th>
<th>Mechanism of liver injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevirapine (NVP)</td>
<td>200 mg po bid</td>
<td>Child–Pugh class B or C: contraindicated</td>
<td>Hypersensitivity reaction, direct drug toxicity/drug metabolism</td>
</tr>
<tr>
<td>Etravirine (ETR)</td>
<td>200 mg po bid</td>
<td>Child–Pugh class A or B: no adjustment; Child–Pugh class C: not defined</td>
<td>Hypersensitivity reaction</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir (RTV) full-dose</td>
<td>No longer used</td>
<td></td>
<td>Direct drug toxicity/drug metabolism</td>
</tr>
<tr>
<td>Tipranavir (TPV) + RTV low-dose</td>
<td>(TPV 500 mg + RTV 200 mg) po bid</td>
<td>Child–Pugh class A: use with caution; Child–Pugh class B or C: contraindicated</td>
<td>Direct drug toxicity/drug metabolism</td>
</tr>
<tr>
<td>Atazanavir (ATV)</td>
<td>400 mg po once daily</td>
<td>Child–Pugh class B: 300 mg po once daily; Child–Pugh class C: contraindicated</td>
<td>Indirect hyperbilirubinemia: does not cause liver injury</td>
</tr>
<tr>
<td>Indinavir (IDV)</td>
<td>800 mg po q8h</td>
<td>Mild to moderate hepatic insufficiency: 600 mg po q8h</td>
<td>Indirect hyperbilirubinemia: does not cause liver injury</td>
</tr>
<tr>
<td>NRTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stavudine (D4T)</td>
<td>≥60 kg: 40 mg po bid</td>
<td>Not defined</td>
<td>Mitochondrial toxicity</td>
</tr>
<tr>
<td>Zidovudine (AZT, ZDV)</td>
<td>300 mg po bid</td>
<td>Not defined</td>
<td>Mitochondrial toxicity</td>
</tr>
<tr>
<td>Didanosine (ddl)</td>
<td>Enteric coated: ≥60 kg: 400 mg po once daily <60 kg: 250 mg po once daily</td>
<td>No adjustment</td>
<td>Mitochondrial toxicity, cryptogenic liver disease, noncirrhotic portal hypertension</td>
</tr>
<tr>
<td>Abacavir (ABC)</td>
<td>300 mg po bid</td>
<td>Child–Pugh class A: 200 mg po bid (use oral solution); Child–Pugh class B or C: contraindicated</td>
<td>Hypersensitivity reaction, especially in HLA-B*5701 positive patients</td>
</tr>
<tr>
<td>Lamivudine (3TC)</td>
<td>300 mg po once daily or 150 mg po bid</td>
<td>No adjustment</td>
<td>HBV reactivation due to medication withdrawal or resistance</td>
</tr>
<tr>
<td>Emtricitabine (FTC)</td>
<td>Oral capsule: 200 mg po once daily</td>
<td>Not defined</td>
<td>HBV reactivation due to medication withdrawal or resistance</td>
</tr>
<tr>
<td>Tenofovir (TDF)</td>
<td>300 mg po once daily</td>
<td>No adjustment</td>
<td>HBV reactivation due to medication withdrawal or resistance</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfuvirtide (T20)</td>
<td>90 mg subcutaneous bid</td>
<td>Not defined</td>
<td>Hypersensitivity reaction</td>
</tr>
<tr>
<td>Maraviroc (MVC)</td>
<td>Recommended dose depends on other drugs in regimen</td>
<td>Not defined, caution advised</td>
<td>Hypersensitivity reaction, direct drug toxicity/drug metabolism</td>
</tr>
</tbody>
</table>

bid, twice daily; po, by mouth; q8h, every 8 hours.
sensitivity reactions resulting in liver failure have been reported with the newer NNRTI etravirine. Efavirenz can also cause hepatotoxicity but does so less frequently than NVP or etravirine.

Hepatotoxicity associated with PIs generally occurs weeks to months after drug initiation. Full-dose ritonavir (RTV) was strongly associated with hepatotoxicity but is no longer used. The low-dose RTV used to boost levels of other PIs does not appear to increase the risk of hepatotoxicity. However, clinical hepatitis and liver failure have been reported with the newer PI tipranavir in combination with RTV boosting. Atazanavir and indinavir both commonly cause an indirect hyperbilirubinemia, which is not associated with liver injury and does not require treatment discontinuation.

The nucleoside reverse transcriptase inhibitors (NRTIs) are associated with mitochondrial toxicity as a result of their ability to inhibit mitochondrial polymerase γ. Clinically this presents with hepatic steatosis and lactic acidosis from weeks to months after initiation. Stavudine, ddi, and zidovudine are the most frequently implicated. Prolonged ddI use has also been associated with cryptogenic liver disease and recently has been linked to noncirrhotic portal hypertension and esophageal varices. Although less associated with mitochondrial toxicity, abacavir might cause hypersensitivity reactions especially in HLA-B*5701 positive patients. Finally, lamivudine, emtricitabine, and tenofovir can lead to HBV reactivation and severe acute hepatitis if withdrawn in an HBV-infected patient or if resistance develops.

The fusion inhibitor enfuvirtide has been rarely associated with hypersensitivity reactions, and the newer drug maraviroc, a CCR5 inhibitor, carries a black box warning for hepatotoxicity as a result of hypersensitivity.

Given the relatively high incidence of ART-related hepatotoxicity, all patients should have baseline ALT and AST checked, followed by regular monitoring every 3 months. Patients should be educated regarding symptoms of hepatitis and hypersensitivity reactions. If an adverse liver event occurs, ART should be discontinued in patients with symptoms, jaundice and elevated direct hyperbilirubinemia, grade 4 hepatotoxicity (ALT/AST >10 times upper limit of normal), or severe lactic acidosis. Mild asymptomatic ALT or AST elevations usually spontaneously resolve without drug discontinuation (Table 3).

Non-Antiretroviral Therapy–Related Medication Toxicity

HIV-infected patients are often prescribed a number of non-ART medications that can have adverse liver effects either alone or in combination (Table 4).

Alcoholic Liver Disease

Although alcoholic liver disease is responsible for nearly half of all deaths due to chronic liver disease in the United States, the role of alcohol abuse on liver disease in HIV-infected populations has not been well-defined. In one study of 2864 HIV-infected adults in the United States, 8% of the entire cohort and 15% of current alcohol drinkers were classified as heavy drinkers, which is almost twice as prevalent as in the general population.

Active alcohol intake is known to be associated with faster disease progression in HCV mono-infection. In one study...
Table 3. Continued
Mitochondrial toxicity
Associated drugs
NRTIs: ddi > D4T > AZT/ZDV > 3TC = FTC = ABC = TDF

Onset
Weeks to months

Clinical manifestations
Anorexia, abdominal pain, nausea, vomiting, weight loss, fatigued
Might progress to tachycardia, tachypnea, jaundice, muscle weakness, altered mental status, multi-organ failure
Lab abnormalities include increased lactate, low arterial pH, low bicarbonate, increased anion gap

Prevention/monitoring
Check lactate in symptomatic patients or in patients with elevated anion gap or low bicarbonate

Management
Mild symptoms
● Change ART regimen to NRTI with lower risk of mitochondrial toxicity or to NRTI-sparing regimen
● Closely monitor lactate after resuming NRTI

Severe symptoms
● Discontinue ART
● Supportive care, which might include hemodialysis or hemofiltration, mechanical ventilation
● Intravenous thiamine and/or riboflavin

IRIS
Associated drugs
Any ART

Onset
First 2 months

Clinical manifestations
Nonspecific symptoms (fever, night sweats, fatigue, jaundice, nausea)
Might be difficult to distinguish from hepatitis due to drug toxicity without liver biopsy
If performed, liver biopsy shows hepatic necrosis with CD8+/H11001

Prevention/monitoring
Screen for HBV and HBV before ART initiation (should be done in all HIV-positive patients regardless of ART)
In HIV-HBV, treat HBV when initiating HAART
Consider diagnosis in patients with HBV or HCV coinfection and robust response to ART
In patients with HBV or HCV, monitor LFTs at least every month × first 3 months of ART initiation

Management
Symptomatic patients
● Discontinue ART

Asymptomatic patients
● Discontinue ART if AST/ALT >10 × ULN
● Closely monitor patients with less severe increases in AST/ALT

Hepatitis B reactivation
Associated drugs
3TC, FTC, TDF

Onset
After withdrawal of medication with anti-HBV activity or development of HBV resistance (usually months to years of therapy)

Clinical manifestations
Ranges from asymptomatic increase in LFTs to severe fulminant hepatitis
Median onset 12–16 weeks after withdrawal

Table 3. Continued
Prevention/monitoring
In setting HBV, ART regimen should include TDF and FTC (Truvada) or TDF and 3TC
If 3TC is withdrawn because of HIV resistance, replace it with an agent with anti-HBV activity

Management
● Resume anti-HBV therapy with appropriate agent on basis of resistance profile

3TC, lamivudine; ABC, abacavir; AZT/ZDV, zidovudine; D4T, stavudine; ETR, etravirine; FTC, emtricitabine; HAART, highly active antiviral therapy; LFT, liver function test; MVC, maraviroc; T20, enfuvirtide; TDF, tenofovir; ULN, upper limits of normal.

Nonalcoholic Fatty Liver Disease
NAFLD refers to fat deposition in hepatocytes, or steatosis, in individuals with little or no alcohol use. When accompanied by inflammation and fibrosis, it is referred to as nonalcoholic steatohepatitis (NASH). The prevalence of NAFLD in the U.S. population ranges from 17%–33%, and risk factors include obesity, hyperglycemia, diabetes mellitus, and hypertriglyceridemia. Recently, mounting evidence suggests that the prevalence of hepatic steatosis in HIV-infected patients is high, especially in patients with chronic HCV or on NRTIs.61 Most of the prevalence data come from studies in HIV-HCV coinfected individuals, with rates of steatosis in this population of HIV-HCV coinfected patients, excessive alcohol use was associated with elevated HCV RNA levels.61 In another study of 1358 HIV-infected individuals at an urban center, 10% reported hazardous drinking, which was independently associated with an elevated surrogate for hepatic fibrosis.72 These results suggest that alcohol abuse is prevalent among HIV-infected individuals and can independently contribute to liver disease progression. As a modifiable risk factor for liver disease, it is important that physicians provide counseling regarding alcohol consumption in this population.

Table 4. Partial List of Potentially Hepatotoxic Non-ART Medications Prescribed to HIV-Infected Individuals

<table>
<thead>
<tr>
<th>Medication</th>
<th>Pattern of liver injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antifungals</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole, fluconazole, amphotericin B</td>
<td>Hepatocellular injury</td>
</tr>
<tr>
<td>Antibiotics</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Hepatocellular injury</td>
</tr>
<tr>
<td>Azithromycin, dapsone</td>
<td>Cholestatic injury</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>Mixed hepatocellular-cholestatic injury</td>
</tr>
<tr>
<td>Tuberculosis treatment</td>
<td></td>
</tr>
<tr>
<td>Isoniazid, rifampin, pyrazinamide</td>
<td>Hepatocellular injury</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>Cholestatic injury</td>
</tr>
<tr>
<td>Antivirals</td>
<td></td>
</tr>
<tr>
<td>Ganciclovir, acyclovir</td>
<td>Hepatocellular injury</td>
</tr>
<tr>
<td>Anabolic/androgenic steroids</td>
<td>Cholestatic injury, liver tumors, peliosis hepatis</td>
</tr>
<tr>
<td>Testosterone, nandrolone, oxandrolone</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table represents a partial list of potentially hepatotoxic non-ART medications prescribed to HIV-infected individuals. Further research and comprehensive monitoring are necessary to identify and mitigate the risks associated with these medications.
ranging from 40%–69%.33,74 However, in a recent study of 216 HIV-infected patients without viral hepatitis coinfection, 31% had NAFLD diagnosed, although most were diagnosed with ultrasound rather than the gold standard of liver biopsy.75

Metabolic abnormalities are extremely common in HIV-infected persons on ART, especially NRTI-PI combinations. These include insulin resistance, dyslipidemia, hypertriglycerideremia, and lipodystrophy, a disorder of peripheral fat distribution resulting in lipotrophy and visceral adiposity.76 NRTIs can also lead to hepatic steatosis via inhibition of mitochondrial DNA replication, resulting in triglyceride accumulation in the liver.77 Hypertriglycerideremia, low high-density lipoprotein, and low total cholesterol have also been independently associated with HIV infection and might be mediated by cytokines like interferon alfa.78 These metabolic abnormalities have been associated with the development of NASH in HIV-infected patients.79

The natural history of NAFLD in HIV infection is unknown. In the general population, approximately 10%–15% of patients with simple steatosis progress to NASH, and 15%–20% of these patients progress to cirrhosis.80 In general, steatosis alone is not concerning for liver damage, but it might exacerbate underlying chronic liver disease. In HCV-monoinfected patients, steatosis is associated with faster progression of fibrosis and decreased response to treatment.81 Similarly, in cohorts of HIV-HCV coinfection, hepatic steatosis has been associated with more advanced liver fibrosis.33,74 With continued investigation and research into NAFLD, its impact on liver disease progression in HIV-infected individuals will likely be further elucidated.

Nodular Regenerative Hyperplasia

Nodular regenerative hyperplasia (NRH) is a rare condition characterized by multiple small regenerative nodules in the liver parenchyma. NRH has recently become increasingly recognized in HIV-infected patients with cryptogenic liver disease.82 Although the etiology is unclear, both ddi use and thrombophilia have been associated with the disease.82,83 NRH should be considered in HIV-infected patients with portal hypertension of unclear etiology, especially those on ddi.

Acquired Immunodeficiency Syndrome–Related Liver Disease

Acquired Immunodeficiency Syndrome Cholangiopathy

AIDS cholangiopathy occurs when infection-related strictures in the biliary tract lead to biliary obstruction. It typically presents with right upper quadrant (RUQ) pain and a markedly increased alkaline phosphatase level, with less elevated bilirubin and normal or slightly increased transaminase levels. Patients might also have fever, nausea, vomiting, and diarrhea; jaundice is uncommon.84 It is usually seen in low CD4 counts (<100/mm3). Consequently, although previously relatively common among HIV-infected patients, it is much less common in the ART era. Indeed, in a recent retrospective study of 94 patients diagnosed with AIDS cholangiopathy at an urban hospital between 1983 and 2001, only 13 were diagnosed after 1996.85

The most common infection associated with AIDS cholangiopathy is Cryptosporidium parvum, followed by CMV. Microsporidia, Cyclospora cayetanensis, Mycobacterium avium-intracellu-

Acalculous Cholecystitis

Acalculous cholecystitis has been well-documented in HIV infection and is usually associated with CMV or Cryptosporidium, although other infections, including Isospora and microsporidia have been implicated.87,88 Patients typically present with RUQ abdominal pain and fever with cholestasis; leukocytosis is often not present. Imaging reveals a thickened, distended, acalculous gallbladder, and HIDA scan often shows a nonfunctioning gallbladder.88 Cholecystectomy is the treatment of choice.

Acquired Immunodeficiency Syndrome–Related Neoplasms

The AIDS-defining malignancies non-Hodgkin lymphoma (NHL) and KS involve the liver in 33% and 9% of cases, respectively.89,90 Hepatic involvement of NHL might present with asymptomatic liver function test abnormalities, although patients might develop abdominal pain or jaundice. Hepatic involvement of KS rarely causes symptoms or death.90

Opportunistic Infections

Several opportunistic infections have been associated with hepatic involvement in advanced AIDS (Table 5). Of these, Mycobacterium avium complex is the most common. It is usually characterized histologically by acid-fast bacilli–containing poorly formed granulomas, although mass lesions have been described.90,91 Patients often present with RUQ abdominal pain and fever, abdominal pain. Alkaline phosphatase is usually disproportionately increased.92 Hepatic involvement of Mycobacterium tuberculosis, including liver abscesses, has been reported in approximately 8% of patients with extrapulmonary tuberculosis and HIV infection.93 CMV is one of the most common opportunistic infections involving the liver detected on autopsy of patients with advanced AIDS but rarely results in clinical hepatitis.80,92 When CMV presents as hepatitis, patients usually have mild transaminisits, fever, malaise, weight loss, and hepato-megaly.

Hepatic involvement of fungal infections, including Cryptococcus neoformans, Histoplasma capsulatum, and Coccidioides immitis, can be seen in patients with AIDS and is usually detected on liver biopsy or autopsy. Although liver function test results are often abnormal, the liver involvement is usually asymptomatic.94,95 Extrapulmonary Pneumocystis jiroveci involving the liver has been described and might be seen in the setting of inhaled pentamidine for prophylaxis of Pneumocystis jiroveci pneumon-ia.96 Bacillary peliosis hepatitis is a rare disease characterized by multiple blood-filled cavities in the liver parenchyma; it has been reported in patients with AIDS and Bartonella henselae infection.97 Other reported opportunistic infections involving AIDS.
the liver of patients with AIDS include disseminated herpes simplex virus, human herpesvirus 6, varicella-zoster virus, Epstein–Barr virus, adenovirus, *Candida albicans*, *Aspergillus fumigatus*, *Toxoplasma gondii*, and *Strongyloides stercoralis*.90–92

Vanishing Bile Duct Syndrome

The vanishing bile duct syndrome (VBDS) is an acquired disease resulting in loss of small and medium-sized
intrahepatic bile ducts. Multiple causes have been identified, and there have been case reports of VBDS associated with advanced AIDS, with cases attributed to CMV viremia and medication toxicity.58,59 The presentation is variable and often related to cholestasis. Diagnosis is based on histology, although the work-up should include imaging to rule out extrahepatic biliary obstruction. The outcome of reported AIDS-associated VBDS cases is very poor, with progression to liver failure and death.88,89

Conclusions
Liver disease among HIV-infected individuals is a common and important cause of non-AIDS-related morbidity and mortality. In the ART era, the spectrum of liver disease among patients with HIV infection has changed dramatically, shifting from opportunistic infections to sequelae of chronic infections, medication toxicities, alcohol use, and fatty liver. Management of HIV-infected patients requires recognition of these conditions and targeted diagnosis and treatment.

References

eye treatment of
Reprint requests
Address requests for reprints to: Dr Jennifer C. Price, MD, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, 600 N Wolfe Street, Blalock 415, Baltimore, Maryland 21287. e-mail: jcohen@jhmi.edu; fax: (410) 502-7010.

Conflicts of interest
The authors disclose no conflicts.

Funding
This publication was made possible by grants 1KL2RR025006-01 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research (J.C.P.). NIH R01 AI071820 (C.L.T.), and NIH R01 AI060449 (C.L.T.). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. Information on NCRR is available at http://www.ncrr.nih.gov/.