High Prevalence of Echocardiographic Abnormalities among HIV-infected Persons in the Era of Highly Active Antiretroviral Therapy

Kristin E. Mondy,1,2 John Gottdiener,3 E. Turner Overton,1 Keith Henry,4 Tim Bush,5 Lois Conley,5 John Hammer,6 Charles C. Carpenter,7 Erna Kojic,7 Pragna Patel,5 John T. Brooks,5 and the SUN Study Investigators

1Washington University School of Medicine, St Louis, Missouri; 2University of Texas Southwestern, Austin Program, Central Texas Veterans Healthcare System, Austin; 3University of Maryland, Baltimore; 4Hennepin County Medical Center, Minneapolis, Minnesota; 5Centers for Disease Control and Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Division of HIV/AIDS Prevention, Atlanta, Georgia; 6Denver Infectious Disease Consultants, Denver, Colorado; and 7 Miriam Hospital, Providence, Rhode Island

Background. In the era of highly active antiretroviral therapy (HAART), human immunodeficiency virus (HIV)–infected persons have higher cardiovascular disease risk. Little is known about asymptomatic abnormalities in cardiac structure and function in this population.

Methods. The Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy (SUN Study) is a prospective, observational, multi-site cohort of 656 HIV-infected participants who underwent baseline echocardiography during 2004–2006. We examined prevalence of and factors associated with left ventricular systolic dysfunction (LVSD), diastolic dysfunction (DD), pulmonary hypertension (PHTN), left ventricular hypertrophy (LVH), and left atrial enlargement (LAE).

Results. Participant characteristics were as follows: median age, 41 years; 24% women; 29% non-Hispanic black; 73% receiving HAART; and median CD4+ cell count, 462 cells/μL. Among evaluable participants, 18% had LVSD, 26% had DD, 57% had PHTN (right ventricular pressure ≥30 mm Hg), 6.5% had LVH, and 40% had LAE. In multivariate analyses, significant factors (P < .05) associated with LVSD were history of MI, elevated highly sensitive C-reactive protein (hsCRP) level, and current tobacco smoking; for DD, elevated hsCRP level and hypertension; for PHTN, current use of ritonavir; for LVH, hypertension, diabetes, non-white race, female sex with elevated body mass index, calculated as the weight in kilograms divided by the square of height in meters, of >25, elevated hsCRP level, and current use of abacavir; for LAE, hypertension and recent marijuana use.

Conclusions. In this large contemporary HIV cohort, the prevalence of subclinical functional and structural cardiac abnormalities was greater than expected for age. Abnormalities were mostly associated with expected and often modifiable risks. Lifestyle modification should become a greater priority in the management of chronic HIV disease.

Since the introduction of highly active antiretroviral therapy (HAART), human immunodeficiency virus (HIV) infection has evolved into a chronic disease in which patients may continue to receive HAART indefinitely [1]. Consequently, there is concern about long-term outcomes because of adverse effects of HAART and HIV infection. Atherogenic complications have been observed both among patients treated with HAART [2–4] and among untreated patients with low CD4+ cell counts [5]. Few studies have reported the prevalence of important abnormalities in cardiac structure and function among persons taking HAART [6,7]. In the pre-HAART era, a large echocardiographic study involving 952 asymptomatic HIV-infected persons found that 8% of subjects had dilated cardiomyopathy, which was associated with lower CD4+ cell...
The SUN Study is a prospective, observational cohort funded by the Centers for Disease Control and Prevention (CDC) that monitors the clinical course of HIV-infected individuals treated with HAART from 7 HIV-specialty clinics in 4 US cities: St. Louis, Missouri; Providence, Rhode Island; Minneapolis, Minnesota; and Denver, Colorado [22]. Data collection (except imaging) occurred at the clinic site and coincided with subjects’ schedule of routine care. Imaging studies were obtained at a single site within each city. Seven hundred HIV-infected patients were enrolled from March 2004 through June 2006. The study’s design, and its data collection and management methods have been described previously [22]. Participants were generally healthy HIV-infected patients receiving routine outpatient care whose entire antiretroviral experience consisted only of HAART.

Patient data, including sociodemographic characteristics and all symptoms, signs, diagnoses, treatments, and laboratory data, were abstracted from medical charts and entered into an electronic database (Clinical Practice Analyst; Cerner) by trained staff. These data are reviewed for quality and are analyzed centrally. Additional data were collected through physical examination, noninvasive imaging (echocardiogram, carotid intima-media thickness [cIMT], coronary computed tomography, and dual-energy X-ray absorptiometry [DEXA]), comprehensive testing for sexually transmitted diseases, and validated audio computer-assisted self-interview (ACASI) [23, 24]. The ACASI collected behavioral risk data and other health information, including family history and use of tobacco, alcohol and recreational drugs. The study protocol has been approved and is reviewed annually by the CDC and each site’s institutional review board.

Laboratory Evaluation

Clinical laboratory testing was performed for CD4+ cell count and fasting high-density lipoprotein, low-density lipoprotein, total cholesterol, glucose, and HIV RNA levels using commercial assays at each site according to the health care provider’s usual standard-of-care. Laboratory tests used for research only (insulin, highly-sensitive C-reactive protein [hsCRP], and 25-OH vitamin D) were performed by the Diabetes Research and Training Center Radioimmunoassay Core Laboratory, Washington University School of Medicine (St Louis, MO), for all subjects. Serum and plasma used for these tests were aliquoted and stored at −70°C until time of batched assay. Fasting status was verified at the time of phlebotomy.

Echocardiographic Measurements

Echocardiograms were performed at the 4 participating sites according to standardized procedures described elsewhere [22, 25–28]. Studies were recorded on videotape and digitized offline on a commercially available workstation at a core laboratory (University of Maryland Medical Center, Baltimore). They were interpreted by a single experienced reader blinded to the study [22]. Of the total cohort of 700 participants, 656...
LA enlargement was defined on the basis of LA volume calculated using the following formula: LA volume = \(\frac{.85 \times A1 \times A2}{L} \)/BSA, where \(A1 \) = the area of the atrium in the 4-chamber view (cm\(^2\)), \(A2 \) = the area of the atrium in the 2-chamber view, \(L \) = the long axis length of the atrium (cm), and BSA = body surface area. LA enlargement was normalized for BSA and categorized [26] as normal (<29 mL/m\(^2\)), mild (29–33 mL/m\(^2\)), moderate (34–39 mL/m\(^2\)), and severe (>40 mL/m\(^2\)).

Statistical Analysis

For all analyses, cardiac outcomes of interest were redefined as dichotomized categorical variables where “normal” was evaluated versus all other categories. Univariate analyses of associations between cardiac outcomes and potential risk factors were performed using either Mantel-Hanzel \(X^2 \) or Fisher’s exact test for categorical variables and Student’s \(t \) test for continuous variables. Significant variables (\(P < .10 \)) in univariate analysis or variables that had been found to be associated with functional and structural cardiac disease in previous studies were included in the multivariate logistic regression models. We first constructed full multivariate models, which included cardiac risk factors (eg, age, history of cardiovascular disease, and history of myocardial infarction) and all factors associated (\(P \leq .10 \)) with the outcome of interest in univariate analyses. Using the backward elimination method, we then removed from the full model nonsignificant (\(P > .05 \)) factors, starting with those having the highest \(P \) values, and constructed a parsimonious model, which included only variables independently (\(P \leq .05 \)) associated with the outcome of interest. All analyses were performed using SAS statistical software, version 9.1 (SAS).

RESULTS

Patient Characteristics

Among the 656 participants with complete echocardiographic and clinical data, the mean age was 41 years (interquartile [IQR] range, 35–47 years), 24% were women, 29% were non-Hispanic black, and 10% were Hispanic. The median CD4+ cell count was 462 cells/mm\(^3\) (IQR, 326–661 cells/mm\(^3\)), and 73% of subjects were currently prescribed HAART, of whom 91% had an HIV RNA level <400 copies/mL. Additional characteristics are shown in Table 1.

Prevalence of Echocardiographic Abnormalities

Eighteen percent and 26% of participants with available data had abnormal systolic and diastolic dysfunction, respectively. One participant (<1%) had severe systolic dysfunction (LV ejection fraction <35%), and 61 (9%) of participants had severe (Grade 3/restrictive) diastolic dysfunction. Of 322 participants with detectable tricuspid regurgitant flow, 50% had
Table 1. Baseline Characteristics of SUN Study Participants who Underwent Echocardiography

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Participants (n = 656)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median years (IQR)</td>
<td>41 (35–47)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>501 (76)</td>
</tr>
<tr>
<td>Female</td>
<td>155 (24)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>389 (59)</td>
</tr>
<tr>
<td>Black</td>
<td>187 (29)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>66 (10)</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>14 (2)</td>
</tr>
<tr>
<td>Duration since HIV diagnosis, median years (IQR)</td>
<td>6.0 (2.3–8.1)</td>
</tr>
<tr>
<td>History of opportunistic infection</td>
<td>121 (19)</td>
</tr>
<tr>
<td>Co-infection with hepatitis B</td>
<td>21 (5)</td>
</tr>
<tr>
<td>Co-infection with hepatitis C</td>
<td>84 (13)</td>
</tr>
<tr>
<td>Diagnosis of hypertension</td>
<td>199 (30)</td>
</tr>
<tr>
<td>Diagnosis of diabetes</td>
<td>45 (7)</td>
</tr>
<tr>
<td>Diagnosis of chronic kidney disease</td>
<td>12 (2)</td>
</tr>
<tr>
<td>History of myocardial infarction</td>
<td>5 (1)</td>
</tr>
<tr>
<td>Diagnosis of congestive heart failure</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Diagnosis of pulmonary hypertension</td>
<td>3 (<1)</td>
</tr>
<tr>
<td>Receiving lipid-lowering therapy</td>
<td>65 (10)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>280 (44)</td>
</tr>
<tr>
<td>Current drug use</td>
<td></td>
</tr>
<tr>
<td>Cocaine</td>
<td>80 (13)</td>
</tr>
<tr>
<td>Marijuana</td>
<td>200 (31)</td>
</tr>
<tr>
<td>Inhaled nitrates</td>
<td>123 (10)</td>
</tr>
<tr>
<td>Heroin or methamphetamine</td>
<td>44 (7)</td>
</tr>
<tr>
<td>Receiving HAART</td>
<td>478 (73)</td>
</tr>
<tr>
<td>HIV RNA level <400 copies/mL</td>
<td>435 (91)</td>
</tr>
<tr>
<td>Type of HAART</td>
<td></td>
</tr>
<tr>
<td>Ritonavir-boosted PI</td>
<td>181 (38)</td>
</tr>
<tr>
<td>Unboosted PI</td>
<td>40 (8)</td>
</tr>
<tr>
<td>NNRTI</td>
<td>230 (48)</td>
</tr>
<tr>
<td>Three or more NRTIs</td>
<td>41 (9)</td>
</tr>
<tr>
<td>Duration of HAART, median years (IQR)</td>
<td>2.3 (0.6–5.0)</td>
</tr>
<tr>
<td>CD4+ count, median cells/mm3 (IQR)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>462 (326–661)</td>
</tr>
<tr>
<td>Nadir</td>
<td>211 (93–324)</td>
</tr>
<tr>
<td>BMI, median value (IQR)</td>
<td>25.5 (22.8–28.6)</td>
</tr>
<tr>
<td>Glucose level, median mg/dL (IQR)</td>
<td>92 (84–99)</td>
</tr>
<tr>
<td>Total cholesterol level, median mg/dL (IQR)</td>
<td>180.5 (154–208)</td>
</tr>
<tr>
<td>LDL level, median mg/dL (IQR)</td>
<td>105 (84–130)</td>
</tr>
<tr>
<td>HDL level, median mg/dL (IQR)</td>
<td>40 (33–50)</td>
</tr>
<tr>
<td>TG level, median mg/dL (IQR)</td>
<td>138 (95–212)</td>
</tr>
<tr>
<td>Insulin level, median mg/dL (IQR)</td>
<td>8.7 (5.4–13.8)</td>
</tr>
<tr>
<td>hsCRP, median μg/L (IQR)</td>
<td>1.8 (0.8–4.5)</td>
</tr>
<tr>
<td>25-Hydroxy-vitamin D, median mg/dL (IQR)</td>
<td>23.2 (15.1–31.3)</td>
</tr>
<tr>
<td>Carotid IMT, median mm (IQR)</td>
<td>0.71 (0.65–0.80)</td>
</tr>
</tbody>
</table>

NOTE. Data are no. (%) of participants, unless otherwise indicated. HAART, highly active antiretroviral therapy; HDL, high-density lipoprotein; hsCRP, high sensitivity C-reactive protein; IMT, intima media thickness; IQR, interquartile range; LDL, low-density lipoprotein; NNRTI, nonnucleoside reverse-transcriptase inhibitor; NRTI, nucleoside reverse-transcriptase inhibitor; PI, protease inhibitor; SEM, standard error of the mean; SUN study, Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy; TG, triglyceride.
Table 2. Echocardiographic Characteristics of SUN Study Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%) of participants</th>
<th>Mean value (±SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular systolic dysfunction (n = 652)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal: >55%</td>
<td>533 (82)</td>
<td>61.0 ± 4.2</td>
<td>55.0–77.1</td>
</tr>
<tr>
<td>Mild: 45%–55%</td>
<td>116 (18)</td>
<td>53.3 ± 1.5</td>
<td>45.4–55.0</td>
</tr>
<tr>
<td>Moderate: 35%–45%</td>
<td>2 (<1)</td>
<td>42.9 ± 0.4</td>
<td>42.7–43.2</td>
</tr>
<tr>
<td>Severe: <35%</td>
<td>1 (<1)</td>
<td>31.4</td>
<td>–</td>
</tr>
<tr>
<td>Left ventricular diastolic function (n = 647)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 0: normal</td>
<td>477 (74)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Grade 1: impaired relaxation</td>
<td>97 (15)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Grade 2: pseudonormal</td>
<td>12 (2)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Grade 3: restrictive</td>
<td>61 (9)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pulmonary hypertension (RVP mm Hg) (n = 322)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal: < 31</td>
<td>139 (43)</td>
<td>27.1 ± 2.9</td>
<td>14.4–30.97</td>
</tr>
<tr>
<td>Borderline abnormal: 31–35</td>
<td>109 (34)</td>
<td>33.2 ± 1.4</td>
<td>31.06–35.99</td>
</tr>
<tr>
<td>Mildly abnormal: 36–40</td>
<td>52 (16)</td>
<td>38.2 ± 1.4</td>
<td>36.1–40.9</td>
</tr>
<tr>
<td>Moderately abnormal: 41–50</td>
<td>17 (5)</td>
<td>44.9 ± 3.0</td>
<td>41.1–49.9</td>
</tr>
<tr>
<td>Severely abnormal: >50</td>
<td>5 (2)</td>
<td>67.8 ± 16.9</td>
<td>54.8–90.3</td>
</tr>
<tr>
<td>Left ventricular mass (g/m².7) (n = 644)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal: (<45 for women; <49 for men)</td>
<td>602 (93)</td>
<td>33.0 ± 6.2</td>
<td>10.2–48.8</td>
</tr>
<tr>
<td>Mildly abnormal: (45–51 for women; 49–55 for men)</td>
<td>26 (4)</td>
<td>49.2 ± 2.6</td>
<td>45.3–55.9</td>
</tr>
<tr>
<td>Moderately abnormal: 52–58 for women; 56–63 for men</td>
<td>8 (1)</td>
<td>58.0 ± 3.0</td>
<td>54.0–62.7</td>
</tr>
<tr>
<td>Severely abnormal: (≥59 for women; ≥64 for men)</td>
<td>8 (1)</td>
<td>83.3 ± 30.3</td>
<td>60.7–151.4</td>
</tr>
<tr>
<td>Left atrial volume (ml/m² BSA) (n = 631)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal: <29</td>
<td>378 (60)</td>
<td>23.4 ± 3.8</td>
<td>11.0–29.0</td>
</tr>
<tr>
<td>Mildly abnormal: 29–33</td>
<td>133 (21)</td>
<td>31.4 ± 1.5</td>
<td>29.1–34.0</td>
</tr>
<tr>
<td>Moderately abnormal: 34–39</td>
<td>70 (11)</td>
<td>36.5 ± 1.6</td>
<td>34.2–40.0</td>
</tr>
<tr>
<td>Severely abnormal: ≥40</td>
<td>50 (8)</td>
<td>45.3 ± 6.2</td>
<td>40.1–71.2</td>
</tr>
</tbody>
</table>

NOTE. SUN study, Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy.

Figure 1. Distribution of cardiac abnormalities among Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy participants. LVEF, left ventricular ejection fraction.
Left atrial enlargement
Left ventricular hypertrophy
Pulmonary hypertension
Left ventricular systolic dysfunction

In univariate analyses, factors significantly associated (P ≤ .05) with systolic dysfunction were male sex, current tobacco smoking, ever having used cocaine, and hepatitis C co-infection. Factors significantly associated with diastolic dysfunction were diagnosis of hypertension, lower nadir CD4+ cell count, higher visceral fat content by DEXA, higher cIMT level, and current use of abacavir. Factors significantly associated with LA enlargement were older age, non-Hispanic black race, diagnosis of hypertension, recent use of marijuana or cocaine, and lower triglyceride level; use of efavirenz was protective (P = .004).

In multivariate analyses, factors significantly associated with systolic dysfunction were having a history of a myocardial infarction, elevated hsCRP level, and current tobacco smoking (Table 3). Factors significantly associated with diastolic dysfunction were diagnosis of hypertension and elevated hsCRP level. Current ritonavir-boosted PI use was the only factor significantly associated with pulmonary hypertension. Hypertension, race other than non-Hispanic white, female sex with BMI ≥ 25, diagnosis of diabetes, current abacavir use, and elevated hsCRP level were significantly associated with LV hypertrophy. Factors significantly associated with LA enlargement were hypertension and recent marijuana use. Other immunologic and virologic variables (nadir/current CD4+ cell count, HIV RNA level, and prior AIDS diagnosis) were included in these multivariate analyses, but no significant associations were found. Analyses of participants with tobacco or drug use history, however, found low CD4+ cell count nadir (<200 cells/mm³) to be a significant risk factor for systolic dysfunction (for current marijuana use: odds ratio [OR], 3.96; 95% confidence interval [CI], 1.76–9.64; for ever having used tobacco, OR, 1.77; 95% CI, 1.07–2.96). Only 16% of participants were HAART-naïve; statistical power was inadequate to compare echocardiographic abnormalities between HAART-experienced and HAART-naïve subjects.

DISCUSSION

In this large cohort of generally healthy HIV-infected patients, cardiac abnormalities were commonly detected by echocardiography, despite the relatively young age and high CD4+ cell counts of participants. The prevalence of diastolic and systolic dysfunction and pulmonary hypertension were particularly notable. In the general population, incidence of primary pulmonary hypertension is 1–2 cases per million persons [30]. Although prevalence estimates of asymptomatic diastolic or systolic dysfunction for younger adults are not established, in a study involving >2000 randomly selected persons (minimum age, 45 years), the prevalence of diastolic dysfunction was 28% [31]. Prevalence of mild-to-moderate systolic dysfunction was 3%–5% [31, 32]. SUN Study participants also had a high prevalence of LA enlargement, which is an independent predictor of risk for cardiovascular disease, heart failure, and stroke in the general population [33, 34]. In comparison, a recent general population estimate of LA enlargement (age range, 25–
74 years) was only 9.8% [35]. Unfortunately, echocardiographic data is lacking for tobacco smokers and recreational drug users within the general population.

Many factors associated with the echocardiographic abnormalities identified in the present study were traditional risk factors; these included hypertension, diabetes, tobacco smoking, and elevated BMI. Interestingly, women rather than men were at greater risk for LV hypertrophy due to BMI. In the SUN Study cohort, the majority of women with BMI >25 were also non-Hispanic black (60%).

Elevated hsCRP level, which is a risk factor for cardiovascular disease among HIV-seronegative persons [36, 37], was also associated with risk for echocardiographic abnormalities. The use of hsCRP level as a predictor of increased cardiovascular disease risk in HIV-infected persons, however, has yielded conflicting results [38–40]. HIV itself causes chronic immune activation and elevation in inflammatory biomarkers [41–43], but there are no studies suggesting hsCRP level adds to traditional risk factors in the evaluation of cardiovascular disease risk in this population [44].

When analyzing HAART as a contributor to echocardiographic abnormalities, we found that cumulative duration of therapy was not a significant factor. When analyzing the use of specific drugs, we found that current use of a ritonavir-boosted PI and abacavir were independently associated with pulmonary hypertension and LV hypertrophy, respectively. In the large Data Collection on Adverse Events of Anti-HIV Drugs Study, subjects taking abacavir had a nearly doubled relative risk of myocardial infarction over 5 years of follow-up [45]. This risk was restricted to recent or current use of abacavir and waned with its discontinuation. Importantly, the absolute risk of myocardial infarction remained quite low (1.6% over a 5-year period). Analyses from another large HIV cohort, the SMART study, found abacavir to be associated with increases in inflammatory biomarkers (interleukin 6 and C-reactive protein) among participants [43]. Whether these inflammatory and vascular effects of abacavir may affect cardiac remodeling requires additional investigation.

Studies that have examined the contribution of PI-containing HAART to pulmonary hypertension have yielded conflicting results [19–21]. An in vitro study found that specific anti-retrovirals (including ritonavir) can impair endothelium-dependent relaxation of pulmonary artery endothelial cells [46]. Clinical trial data, however, suggest that endothelial function is impaired by HIV itself and improves with HAART [42]. In this study, we found no association of pulmonary hypertension with CD4+ cell count, HIV viremia, or length of time since HIV diagnosis.

Notably, in this study, age was not independently associated with any echocardiographic abnormality. The prevalence of pulmonary hypertension, systolic and diastolic dysfunction, and LA enlargement were higher than what would be expected on the basis of the mean age of this cohort [17, 18, 31]. Other traditionally aging-associated processes (osteoporosis, kidney dysfunction, and cardiovascular disease) have also been more prevalent among HIV-infected persons receiving HAART, compared with seronegative persons of similar age [47–50]. We hypothesize that HIV infection itself or exposure to anti-retrovirals might accelerate the changes in cardiac morphology that typically occur later in life in response to effects of traditional risk factors (eg, age and hypertension). Such a hypothesis will require longitudinal study.

There were some limitations to this study. The current analysis was cross-sectional, but included a very large number of subjects, compared with most other echocardiographic studies of HIV infection [6,7,9]. We did not have a suitable HIV-seronegative control group, but we nonetheless found higher-than-expected prevalence rates for several cardiac outcomes, compared with general population data [17, 18, 31, 32, 35], thus suggesting important effects of HIV, HAART, or specific risk behaviors on cardiac function.

Variability may exist with methods used in estimating RVSP and diastolic function. RVSP was estimated using a fixed constant of 10 mm Hg added to the Doppler estimation of right ventricular-right atrial gradient, as is common clinical and investigative practice [51]. However, RA pressure may vary, and actual normal RA pressure is <10 mm Hg. Because few participants were expected to have medical conditions with an extreme RA pressure, additional adjustment of estimated RVSP was not necessary for this analysis.

In conclusion, in the current HAART era, we detected a significant prevalence of subtle yet important echocardiographic abnormalities in a large, generally healthy cohort of HIV-infected adults. Although the pathophysiologic mechanisms underlying these findings remain unknown, our results support lifestyle modifications, such as cessation of smoking and weight loss, as continued priorities in the chronic management of HIV infection. HAART substantially reduces both early and late morbidity and mortality from HIV infection and from a growing list of non–HIV-related conditions [52]. Recommendations to alter an individual’s HAART regimen solely to prevent cardiac disease cannot be made on the basis of this study alone. Ongoing longitudinal studies will help determine whether our findings have any significant impact on future heart function and the relative contribution that treatment-related and non–treatment-related factors have on progression, incidence, and prevention of cardiac disease.

Acknowledgments

We thank Suzette Bartley and Dollene Hemmerlein, Division of Scientific Resources, National Center for Infectious Diseases, CDC, Atlanta, Georgia; John Papp, Carol Farshy, and Christi Phillips, Division of AIDS, STDs and Tuberculosis Laboratory Research, National Center for HIV/
AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, Georgia; David Swan and Juanita Onyewulu, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC, Atlanta, Georgia. We thank the staff at each of the SUN Study sites and collaborating laboratories, and especially the participants who have devoted their time and effort to this research project. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention, US Department of Health and Human Services.

Potential conflicts of interest. All authors: no conflicts.

SUN Study Investigators. John T. Brooks, Pragna Patel, Claudia Vellozzi, Lois Conley, and Tim Bush, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, Georgia; Kathleen Wood, Rose Baker, and Cheryl Akridge, Cerner Corporation, Vienna, Virginia; John Hammer, Tara Kennedy, Barbara Widick and Billie Thomas, Denver Infectious Disease Consultants, Inc., Denver, Colorado; Ken Lichtenstein and Cheryl Stewart, National Jewish Medical and Research Center, Denver, Colorado; Keith Henry, Jason Baker, Kenneth Overton, Don Connor, Lisa Kessels, Mariea Snell, Sara Hubert, Patricia D’Aiello, The Miriam Hospital, Providence, Rhode Island; and Kenneth Mayer, Erna Milunka Kojic, Jennifer Florczyk, Sara Metzler, and John Hall, Hennepin County Medical Center, Minneapolis, Minnesota; Frank Rhamke, Mark Olson, and Eve Austad, Abbott-Northwestern Hospital, Minneapolis, Minnesota; Hal Martin, Meaghan Morton, and Cheri Murch, Park-Nicollet Institute, Minneapolis, Minnesota; Charles Carpenter, Susan Cu-Uvin, Kenneth Mayer, Erna Milunka Kojic, Jennifer Florczyk, Sara Metzler, and Patricia D’Aiello, The Miriam Hospital, Providence, Rhode Island; and E. Turner Overton, Don Connor, Lisa Kessels, Mariae Snell, Sara Hubert, Dorothea Dedeaux-Turner, and Kenneth Griffie, Washington University School of Medicine, St. Louis, Missouri.

References

