Back grey_arrow_rt.gif
 
 
Cancer Care Costs in the United States: Projections 2010-2020 - pdf attached
 
 
  Download the PDF here
 
from Jules: there is no mention of liver cancer in this article.
 
The estimated total cost of cancer care in the United States in 2020 is expected to be $158 billion assuming the most recent observed patterns of incidence, survival, and cost remain the same. This represents a 27% increase from 2010 due only to the projected aging and growth of the US population, according to a study published online January 12th in The Journal of the National Cancer Institute. However, the authors also note the cost of cancer care could rise even more quickly under some reasonable assumptions such as a 2% annual increase in costs of the initial and final phases of cancer care.
 
Cancer disproportionately affects the elderly population, which is expected to increase from 40 million in 2009 to 70 million in 2030. With changes in risk factor prevalence and stage at diagnosis, and development of new diagnostic tools and treatments for cancer in the 1990s, in general cancer incidence declined and survival improved, butcancer care became more expensive. Under a different scenario of continuing trends in cancer incidence, survival, and costs of care, the total cost of cancer care in 2020 is expected to be $173 billion, an even larger increase (39% from 2010).
 
To estimate the national medical cost of cancer care through the year 2020 for 13 cancers in men and 16 cancers in women, Angela Mariotto, Ph.D., and colleagues from the National Cancer Institute, analyzed data on cancer incidence (the rates of newly diagnosed cancer in any given year) and survival from the (SEER) Surveillance, Epidemiology, and End Results database at http://seer.cancer.gov/ and Medicare expenditures associated with cancer from the linked SEER-Medicare database at http://healthservices.cancer.gov/seermedicare/. They combined prevalence (the population rates of people alive with cancer in any given year) and cancer costs by phase of care and used US Census population projections to calculate cancer care costs through the year 2020.
 
The researchers projected prevalence by phase of care under different assumptions about future incidence and survival. Incidence is decreasing for most of the cancer sites. But even with declining incidence rates, the absolute number of individuals diagnosed with cancer will continue to increase because of population changes. The researchers also projected costs by phase of care under different assumptions about future trends.
 
The authors write, "Costs of care for cancer patients who die of their disease follows a "U-shaped" curve, with the highest costs in the initial phase following diagnosis and the phase before death, and the lowest costs in the period in-between, the continuing phase."
 
Although the per person cost of cancer care varies tremendously by cancer site, the overall national burden is driven by prevalence. For example, the per person cost of female breast cancer care in each phase is among the lowest, but the total cost of breast cancer in 2020 is projected to be the highest ($20.5 billion), because of the large number of women living with breast cancer in each phase of care. The highest increases in costs for cancer care between 2010 and 2020 are projected for female breast cancer (32%) and prostate cancer (42%) patients in the continuing phase, representing a higher proportion of long term survivors.
 
Looking ahead, the authors write that, "To investigate the impact of specific cancer control strategies on cancer survivorship and to estimate the societal return on investments in cancer research, more complex modeling approaches are necessary."
 
One such approach is a cooperative study funded by the National Cancer Institute with the Cancer Intervention Surveillance Modeling Network, which uses micro-simulation models to investigate the impact of interventions on population-based cohorts of patients with breast, colorectal, prostate and lung cancers. http://cisnet.cancer.gov/The authors note that while these types of projections are "undoubtedly more reliable" than the projections used in their article, the models require substantial additional research effort, extensive data on populations in the U.S., and could only be done for a limited number of cancer sites.
 
Recent and Projected Incidence
 
For most of the cancer sites, incidence has been decreasing, and we estimated a negative annual percent change (Table 1) during the period 1996 2005. The largest decreases in men were for lung, stomach, and colorectal cancers, respectively, -2.72, -2.24, and -2.22 annual percent change in age-adjusted rates. More dramatic decreases were observed for women for ovarian and cervical cancer, -4.71 and -3.95, respectively, annual percent change in age-adjusted rates. Incidence of kidney cancer and melanoma has been increasing in both men and women, and incidence of lymphoma and brain cancer has been increasing in women (Table 1). Among the five major cancer sites, the largest decreases in incidence were observed for lung and colorectal cancers in men, -2.72 and -2.22, respectively, annual percent change in age-adjusted incidence rates (Figure 1; Similar figures for more cancer sites are available at http://costprojections.cancer.gov.).
 
Recent and Projected Survival
 
Survival has been improving for almost all cancer sites. Survival trends are summarized by the estimated relative risk, which represents the risk of dying of cancer for patients diagnosed in a given year compared with patients diagnosed in the previous year. The largest improvements in survival were for prostate cancer in men, where the risk of dying of cancer death for patients diagnosed in a given year compared with patients diagnosed in the previous year was 89% smaller (ie, RR = 0.89), followed by melanoma (RR = 0.91 in men and RR = 0.92 in women), and female breast cancer (RR = 0.94) (Table 1). For bladder, cervix, and uterus, a flat or slight decline (younger age groups) in survival trend was estimated (data not shown). The observed and modeled 5-, 10-, and 15-year relative survival trends for the major cancer sites for people diagnosed between the ages of 65 and 74 years showed the largest increases in survival for prostate cancer in men and breast cancer in women (Figure 2).
 
Cancer Prevalence.
 
In the year 2010, we estimated that a total of 13 772 000 cancer survivors will be alive, with 42% younger than 65 years and the remaining 58% aged 65 years and older (Table 2). Under the base case scenario, holding incidence and survival constant, the number of cancer survivors in 2020 will increase by 31% to approximately 18 071 000. The largest increase between 2010 and 2020 (42%) was projected for the population aged 65 years and older (Table 2) because of the aging of the US population. The largest proportion of cancer survivors were in the continuing phase of care, representing 86% of all cancer survivors in 2010 and 2020. Female breast (3 461 000), prostate (2 311 000), colorectal (1 216 000), and melanoma (1 225 000) were the sites with the largest number of survivors in 2010 (Table 2). These sites were also projected to have the largest number of survivors in the year 2020. For most of the cancer sites, 2020 cancer prevalence projections were robust under the different incidence and survival assumptions (Table 3). For all cancers, the 2020 projections under the base case, incidence trend, survival trend, and incidence and survival trend scenarios were very similar, with approximately 18 million survivors (Table 3).
 
Estimates of the Medical Costs Associated With Cancer Care
 
The average annualized net costs of care were highest in the last year of life phase of care for patients dying from cancer for all cancer sites (Table 4). The average annualized net costs of care were more variable in the initial phase of care. Brain, pancreas, ovary, esophagus, and stomach cancers had the largest annualized initial cost, and melanoma, prostate, and breast cancers had the lowest annualized initial cost (Table 4).
 
Under the base case scenario, the national cost of cancer care in 2010 was estimated to be $124.57 billion (Table 5). Female breast was the cancer site with the highest cost in 2010 ($16.50 billion) followed by colorectal ($14.14 billion), lymphoma ($12.14 billion), lung ($12.12 billion), and prostate ($11.85 billion). Under the base case scenario, costs in 2020 were estimated to be $157.77 billion, representing a 27% increase from 2010. Assuming constant costs, the scenario with the highest national cost estimate in 2020 was the continuing survival trend only scenario ($165.21 billion), and the lowest national cost estimate in 2020 was the continuing incidence trends only scenario ($147.57 billion). The continuing incidence trend scenario represents a smaller increase in costs from 2010, compared with the base scenario, because incidence trends have been decreasing for most of the cancer sites. The exceptions are cancer of the kidney and melanoma, for which incidence increased. If the incidence of cervical and ovarian cancers continues to decrease, care costs for these cancer sites in 2020 will remain the same or decrease compared with 2010. Under the assumption of continuing survival improvement, costs will increase compared with the base scenario. However, the impact of survival on cancer prevalence was smaller than that of incidence (Table 5). If we assume a 2% annual increase in the average costs of care in the initial and last year of life phases, the cost of cancer care is estimated to be $172.77 billion, representing a 39% increase. Costs of cancer care in 2020 were estimated to be $207 billion under the assumption of 5% increase in the costs in the initial and last year phases of care (escalating costs), representing a 66% increase from 2010.
 
National expenditures in 2020 by phases of care for the five major cancer sites-breast, colorectal, prostate, lung, and lymphoma-were partitioned into the estimated expenditure in 2010 and the additional expenditure under the base case scenario projected for 2020 (Figure 3). Differences were due only to the aging and growth of the US population. Colorectal cancer was the site with the highest cost in the initial phase of care and lung cancer had the highest cost in the last year of life phase of care. Prostate and female breast cancers had the highest cost in the continuing phase. The highest increases in medical cost of care in 2020 were projected for female breast (32%) and prostate (42%) cancer patients in the continuing phase (Figure 3).
 
Discussion
 
We used the most recently available cancer incidence, survival, and medical cost of care data in the United States to estimate and project the national costs of cancer care through the year 2020. In our base case model using constant cancer incidence, survival, and cost of care, we estimated that the national costs of cancer care in 2010 will be approximately $124.57 billion. We projected national costs to increase to $157.77 billion in 2020 under the base case scenario (constant incidence, survival, and cost), a 27% increase. Because we used dynamic assumptions of aging and growing of the US population (3) for all projections, this increase in costs over time in the base case scenario reflects growth and aging in the population only. The largest increase in cost projected for 2020 was in the continuing care phase for female breast and prostate cancers (Figure 3). This increase in the number of breast and prostate cancer survivors has important implications for the demand for medical oncologists (20), as well as the interaction between primary care and oncology for coordination of surveillance care. Our findings will be particularly useful for policy makers for planning and allocation of resources.
 
We also evaluated a variety of sensitivity analysis scenarios reflecting different assumptions about future trends in incidence, survival, and costs of care. Projections using different assumptions of survival and incidence trends were robust and show that changes in incidence and/or survival have a smaller impact on estimates compared with the aging and growth of the US population. The 2020 predicted costs of cancer care under the assumptions of 1) continuing trends (decreasing incidence and increasing survival) and 2) constant incidence and survival were very similar, 154.70 and 157.77 billion US 2010 dollars, respectively. These estimates represent increases of 27% and 24%, respectively, in cost compared with 2010. In both of these scenarios, we assumed that currently developed cancer control technologies and their current costs will continue as in the past. It is likely that new tools for diagnosis, treatment, and follow-up of cancer patients will be developed and will be more expensive. Assuming recent incidence and survival trends, a 2% increase in annual costs of care in the initial and last year of life phases will result in a 39% increase in costs over the 10 years and a cost estimate of $173 billion in 2020. With expected increases in use of targeted chemotherapies, increases in the cost of a course of treatment are expected to escalate more rapidly. A 5% increase in the annual costs of care in the initial and last year of life phases yields a projected $207 billion in 2020, a 66% increase from 2010. However, trends in costs associated with the use of targeted chemotherapies might be mitigated somewhat through the use of genomic based prognostic markers.
 
Our estimates of the national cost of cancer care in the year 2010 are higher than those reported elsewhere (5), even after accounting for differences in the base year used for inflation adjustment. Important differences include our use of the most recent incidence, survival, and cost of care data, identification of cancer patients from registry rather than self-report, use of dynamic population estimates and projections, and detailed methods for estimating cancer prevalence. In particular, our cost estimates were based on Medicare claims through the year 2006, reflecting the use of targeted therapies in this population. In addition, we used a phase of care framework to measure the trajectory of cancer care from diagnosis to death to classify cancer survivors and estimate the cost of care for distinct periods. Costs of care for cancer patients who die of their disease follows a "U-shaped" curve, with the highest costs in the initial phase following diagnosis and the phase before death, and the lowest costs in the period in-between, the continuing phase. This approach not only provides more detailed information of the costs of cancer care but also allows for projections and provides more accurate estimates, especially for less common cancers.
 
Our estimates for 2010 were substantially higher than a recent study (21) of national expenditures for cancer treatment in 2001 2005, which used data on Medical Expenditure Panel Survey (MEPS) respondents who reported being treated for cancer. Importantly, population-based surveys such as the MEPS may underidentify respondents with less common cancers or cancers with short survival following diagnosis (eg, lung, brain, gastric, and pancreatic). Individuals who are ill may also be less likely to respond but may be more likely to receive higher levels of medical care. In addition, as shown here and elsewhere (13,18,22), costs in the continuing phase of care are higher for cancer survivors compared with similar individuals without cancer. However, cancer survivors no longer receiving active cancer treatment in the continuing phase could not be identified as having cancer in these surveys. As a result, estimates from surveys, particularly those that estimate "treated prevalence," are likely to understate national cancer expenditures.
 
There were limitations to our analysis. Our estimates of cancer prevalence were based on cancer incidence and survival from the SEER-9 areas, which do not cover the entire United States. The SEER areas had lower incidence rates than most other states and have been found to have higher socioeconomic status, greater urban population, and more specialty care than the rest of the US population. In addition, because people can be diagnosed with multiple tumors, cancer prevalence and costs estimates that are based on first tumor diagnosed per person may be underestimates. Our estimates for cancer are not directly comparable to those for other diseases, in part because other diseases do not have the high-quality, comprehensive, population-based disease registries that can be linked to health insurance data to provide information from diagnosis to death. In addition, we do not explicitly control for the presence of diseases other than cancer. If the prevalence of other diseases is the same in cancer patients and control subjects, the net difference is associated only with cancer. However, if the prevalence of other diseases is higher in cancer patients than in control subjects, the net difference reflects costs in cancer patients including those associated with other diseases. Evaluating methods for allocating disease-specific health-care costs is an ongoing area of research (23).
 
We made a number of assumptions to develop our national cost estimates. We assumed that costs associated with cancer care in Medicare fee-for-service and managed care settings are the same. Because managed care plans have not traditionally been required to submit claims or encounter data for services received by their Medicare enrollees, we necessarily excluded managed care beneficiaries from the sample used to develop our cost estimates. To date, no studies have compared the costs of care in Medicare fee-for-service and managed care settings, although a study comparing costs of care for younger colorectal cancer patients in a health maintenance organization and a preferred provider organization reported small but not statistically significant differences (24). Furthermore, because Medicare provides coverage for almost all of those over the age of 65 years and the linkage of SEER and Medicare claims represents approximately 26% of the US population, the linked SEER Medicare data are the most comprehensive longitudinal data available for estimating the cost of cancer care in the elderly.
 
We also made assumptions about the relationship between the costs of cancer care in younger populations and the elderly. In populations younger than 65 years, health insurance is predominantly employer based, with many distinct and separate insurance programs. Comprehensive, longitudinal, population-based insurance data with detailed information about patients and cancer diagnosis (ie, linkage to cancer registries) are generally not available for the population younger than 65 years outside of managed care settings. Because of this lack of comprehensive data for the population under the age of 65 years, we adjusted the SEER Medicare cost estimates for patients aged 65 years and older by ratios of 1.2 and 1.5 to reflect more aggressive cancer care received by younger cancer patients in the initial and last year of life phases, respectively. These ratios were based on published studies comparing the costs for patients older and younger than 65 years in managed care settings from the early 1990s (18).
 
A more recent study (25) of treated cancer survivors from the MEPS reported that overall costs among patients younger than 65 years are on average 35% higher than patients of all ages, which is roughly consistent with our estimate of 20% and 50% higher costs for younger patients in the initial and terminal phases, respectively. Because the estimates from the MEPS represented "treated prevalence" and were not reported by phase of care, and the cost data from Health Maintenance Organizations (HMOs) are considerably more detailed and reliable than MEPS data, we relied on the HMO data for our ratios.
 
Another implication of using the ratios of 1.2 and 1.5 to estimate cost in younger populations is that we assumed that the younger population would have access to care similar to that of the elderly population, and, as for the elderly, we assumed that estimates from the fee-for-service setting are consistent with those from settings with other types of insurance. Although approximately 11% of cancer survivors younger than 65 years are uninsured (25), diagnosis of cancer confers Medicaid eligibility in many states. Finally, because most cancer prevalence is among those 65 years and older, for whom our data are strongest, limitations associated with our assumptions about cost estimates for the younger age group have a smaller impact in the overall cost estimate.
 
Because it is difficult to anticipate future developments of cancer control technologies and their impact on survival and incidence trends, we produced future prevalence and cost estimates based on projections of trends in incidence, survival, and costs. These projections were developed separately for each sex and cancer site using reasonable assumptions of future incidence and survival trends based on historical cancer incidence and survival data. In addition, changes in survival and incidence have a reduced impact on prevalence because prevalence includes both people newly diagnosed and those diagnosed more than 1 year ago. The latter represents the vast majority of prevalence cases for most cancer sites. Projections based on these hypothetical scenarios provide a sensitivity analysis of estimates and useful information to future planning and resource allocation.
 
To investigate the impact of specific cancer control strategies on cancer survivorship and to estimate the societal return on investments in cancer research, more complex modeling approaches are necessary. A cooperative agreement funded by the National Cancer Institute, the Cancer Intervention Surveillance Modeling Network (http://cisnet.cancer.gov/), uses microsimulation models to investigate the impact of interventions (ie, primary prevention, screening, and treatment) on population-based cohorts of patients with breast, colorectal, prostate, lung, and esophageal cancers. These microsimulation models require as inputs direct estimates of population use, efficacy, sensitivity, and specificity of new interventions, such as screening and treatment, and can produce estimates of survival and incidence that reflect the usage patterns of the assumed interventions. Although these types of projections are undoubtedly more reliable than the projections reported in this article, they each require a substantial research effort and, therefore, can only be done for a very limited number of cancer sites and specific interventions.
 
Rising health-care costs represent a central challenge for both the federal government and the private sector. The estimates and projections reported in this article may be particularly useful for policy makers for understanding the future burden of cancer care and for prioritizing future resources on cancer research, treatment, and prevention.
 
 
 
 
  icon paper stack View Older Articles   Back to Top   www.natap.org