Underutilization of Aspirin for Primary Prevention of Cardiovascular Disease among HIV-Infected Patients

Greer A. Burkholder¹, Ashutosh R. Tamhane¹, Jorge L. Salinas¹, Michael J. Mugavero¹, James L. Raper¹, Andrew O. Westfall², Michael S. Saag¹, James H. Willig¹

¹Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
²Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

Corresponding author: Greer A. Burkholder, MD, BBRB 220D, 845 19th Street S, Birmingham, AL 35294; Phone: (205) 996-6195; Fax: (205) 934-5600; email: gburkhol@uab.edu
Alternate corresponding author: James H. Willig, MD, BBRB 220B, 845 19 th Street S, Birmingham, AL 35294; Phone (205) 996-5753; Fax (205) 934-5600; email: jwillig@uab.edu

Summary: Aspirin for primary prevention of cardiovascular events is underutilized in HIV-infected patients. As these patients are at increased risk for events compared to HIV negative persons, interventions are needed to increase HIV provider awareness of and adherence to existing guidelines.
Abstract:

Background: HIV-infected patients are at increased risk for cardiovascular disease (CVD) events compared to uninfected persons. However, little is known about HIV provider practices regarding aspirin (ASA) for primary prevention of CVD.

Methods: A cross-sectional study was conducted among patients attending the University of Alabama at Birmingham 1917 HIV Clinic during 2010 to determine the proportion receiving ASA for primary prevention of CVD and identify factors associated with ASA prescription. 10-year risk for CVD events was calculated for men age 45-79 and women age 55-79. The 2009 U.S. Preventive Services Task Force (USPSTF) guidelines were used to determine those qualifying for primary CVD prevention.

Results: Among 397 patients who qualified to receive ASA (mean age=52.2 years, 94% male, 36% African American), only 66 (17%) were prescribed ASA. In multivariable logistic regression analysis, diabetes mellitus (OR=2.60; 95% CI=1.28-5.27), hyperlipidemia (OR=3.42; 95% CI=1.55-7.56), and current smoking (OR=1.87; 95% CI=1.03-3.41) were significantly associated with ASA prescription. Odds of ASA prescription more than doubled for each additional CVD-related co-morbidity present among hypertension, diabetes, hyperlipidemia, and smoking (OR=2.13, 95% CI=1.51-2.99).

Conclusions: In this HIV-infected cohort, less than 1 in 5 patients in need received ASA for primary CVD prevention. Escalating likelihood of ASA prescription with increasing CVD-related co-morbidity count suggests providers may be influenced more by co-occurrence of these diagnoses than by USPSTF guidelines. In the absence of HIV-specific guidelines, interventions to improve HIV provider awareness of and adherence to existing general population guidelines on CVD risk reduction are needed.
Introduction

Due to widespread availability of potent combination antiretroviral therapy (ART), the life expectancy of HIV-infected patients has significantly improved in developed countries [1]. As a result, over half of HIV-infected patients in the U.S. are expected to be over 50 years of age by 2015 [2]. Recent large cohort studies of HIV-infected patients demonstrate morbidity and mortality due to non-AIDS-related events has surpassed that due to AIDS-related events in developed countries, with 6-15% of deaths attributed to cardiovascular disease (CVD) [3-7]. HIV-infected patients appear to have increased risk of coronary heart disease (CHD) and myocardial infarction (MI) compared to uninfected controls [8-11], and also have higher prevalence of subclinical atherosclerosis [12]. As age is an independent risk factor for CVD-related events (MI, ischemic stroke) [13, 14], we can expect temporal increases in incidence of these events as the HIV-infected population ages.

Despite heightened awareness regarding elevated CVD risk among HIV-infected patients [15], little is known about HIV provider practices regarding the use of aspirin (ASA) for primary prevention of CVD events (i.e. prevention of first MI or ischemic stroke). Due to the absence of HIV-specific guidelines, recommendations targeted toward the general population provide the only guidance regarding HIV-infected patients qualifying for ASA for primary prevention. The 2009 United States Preventive Services Task Force (USPSTF) guidelines recommend use of ASA for primary prevention of MIs in men age 45 to 79 years and ischemic strokes in women age 55 to 79 years when the potential CVD benefit (events prevented) outweighs the risk of gastrointestinal hemorrhage [16]. Qualification for ASA is based on age-stratified 10-year coronary heart disease (CHD) risk score for men
Due to the increasing importance of CVD risk assessment and prevention among HIV-infected patients successfully treated with ART, we conducted a cross-sectional study among patients attending a large university-based outpatient HIV clinic to assess the proportion of qualifying patients prescribed ASA for primary prevention per the USPSTF guidelines, and to examine associations of clinical, sociodemographic and psychosocial factors with ASA prescription.

Methods

Study Setting

The University of Alabama at Birmingham (UAB) 1917 Clinic Cohort is an ongoing prospective HIV clinical cohort protocol established in 1992 that has been well-described elsewhere (www.uab1917cliniccohort.org) [17, 18]. Our electronic database captures detailed clinical, sociodemographic, and psychosocial information on all patients receiving care at the UAB 1917 HIV/AIDS Clinic (1917 Clinic), currently including >2,000 active patients. The electronic health record (EHR) and database are 100% quality controlled, with all provider notes reviewed within 72 hours of entry to ensure proper data capture regarding changes in diagnoses, allergies, and medications. In April 2008, electronic capture of patient-reported outcomes (PROs) using standardized, validated questionnaires was added to provide further systematic data capture of psychosocial variables including tobacco, alcohol, substance use, and depression [19]. HIV primary care is provided by a mix of 7 infectious diseases (ID) fellows with once weekly clinic and three full-time nurse practitioners, supervised by 14 ID attending physicians. This study was approved by the UAB Institutional Review Board.
Eligibility Criteria (Figure 1)

All HIV-infected men age 45 to 79 years and HIV-infected women age 55 to 79 years attending the 1917 Clinic with: 1) at least 1 primary HIV provider visit between December 11, 2009 and December 10, 2010 (active patients); and 2) at least 1 primary HIV provider visit between December 11, 2008 and December 10, 2009 (established patients) were eligible for inclusion. New clinic patients initiating care between December 2009-2010 were excluded because the initial care of these patients typically focuses heavily on HIV and antiretroviral (ARV) management. By limiting our sample to established clinic patients, we aimed to allow providers sufficient time to address non-HIV-related issues, such as ASA prescription for primary CVD prevention. Age criteria were based on the 2009 USPSTF recommendations on Aspirin for the Prevention of Cardiovascular Disease [16].

Patients with known history of CVD were excluded, as they would qualify for secondary rather than primary prevention with ASA. CVD-defining diagnoses were abdominal aortic aneurysm, acute coronary syndrome, angina pectoris, angioplasty, arterial disease, carotid endarterectomy, carotid artery stenosis, cerebrovascular accident or disease, claudication, coronary artery bypass graft, coronary artery disease, heart disease not otherwise specified, ischemic heart disease, myocardial infarction, femoral artery bypass, percutaneous transluminal coronary angioplasty, peripheral vascular disease, stroke, transient ischemic attack, and unstable angina.

Patients with a potential contraindication to ASA were also excluded. These contraindications included any history of upper or lower gastrointestinal bleeding, gastric or duodenal ulcer, intracranial bleeding, bleeding diathesis, or discontinuation of any nonsteroidal anti-inflammatory drug (NSAID) including ASA for allergy, adverse event, or side effects.
Other contraindications were diagnoses indicating upper gastrointestinal pain on a patient’s active problem list, current treatment with antiplatelet agents or NSAIDs other than ASA, or with an anticoagulant, or most recent platelet measurement of <60 x 10^3/µL.

Sources of Data

Sociodemographic information, co-occurring medical diagnoses, medications, vital signs and clinically relevant labs were obtained by query (MS SQL®) of the UAB 1917 Clinic Cohort electronic database. Data regarding psychosocial variables was obtained from PROs. Patients complete computerized, standardized questionnaires approximately every 6 months to assess alcohol use (Alcohol Use Disorders Identification Test-Consumption [AUDIT-C]), substance use (Alcohol, Smoking, and Substance Involvement Screening Test [ASSIST]), and depression (Patient Health Questionnaire-9 [PHQ-9]) [19]. Tobacco use was drawn from both the PRO tobacco use questionnaire and EHR active problem list. Information on smoking was required to compute CVD risk scores, and in patients lacking a PRO tobacco use questionnaire, EHR tobacco use data were utilized. Each patient’s index visit was defined as the most recent non-urgent primary HIV provider visit on or prior to the electronic data extraction date (December 10, 2010).

Calculation of CVD Risk

Scores for men were calculated using the Framingham Risk Score (FRS) for 10-year risk of CHD [20]. Factors used in this algorithm included: age at the index visit; systolic and diastolic blood pressure as single, non-standardized measures obtained by electronic sphygmomanometer at the index visit; most recent random total cholesterol and high density lipoprotein cholesterol (HDL-C) values within 12 months of the index visit; and diabetes mellitus (DM) and smoking status. Fasting status for cholesterol measurements was not routinely available. DM was defined
as any history of a DM diagnosis or diabetes-related complication, or presence of a medication used to treat DM on a patient’s active medication list. Current tobacco use was defined as current cigarette smoking of any amount on most recent PRO tobacco use questionnaire, or if no PRO was available within 12 months of the index visit, a diagnosis indicating tobacco use on the patient’s active problem list in the EHR.

Scores for women were calculated using the Framingham 10-year Stroke Risk Score [21]. Factors used in this algorithm included: age, systolic blood pressure, and DM and smoking status with ascertainment as indicated above for men. The score also incorporated current antihypertensive medication use, and any history of atrial fibrillation or left ventricular hypertrophy (LVH). Routine electrocardiograms (EKGs) and echocardiography were not available. Prior history of CVD is a component of the stroke risk score, but patients with known or suspected CVD were excluded from our study as our focus was on primary prevention.

Qualification for ASA for primary prevention of MI in men and ischemic stroke in women was determined using age-stratified 10-year risk scores according to the 2009 USPSTF recommendations [16].

Primary Outcome

The primary outcome was ASA prescription, defined as the presence of oral ASA or combination medication containing ASA at any dose on the active medication list for patients qualifying for primary prevention of CVD on the date of the index visit. UAB 1917 Clinic providers are trained to enter all medications taken by a patient on this list, regardless of whether they are prescribed by our clinic, or obtained from an outside provider or over the counter.

Independent variables
Independent variables included sociodemographic factors (age, sex, race, and insurance status at index visit); most recent CD4+ cell count and plasma HIV-1 RNA within 12 months prior to the index visit; Framingham Risk Score; CVD risk factors including hypertension (HTN), DM, hyperlipidemia, and current cigarette smoking; CVD-related co-morbidity count; body mass index (BMI); current depression; and at-risk alcohol use or substance use. HTN was defined as history of HTN diagnosis or the presence of a medication used to treat HTN on a patient’s active medication list. Hyperlipidemia was defined as history of dyslipidemia, familial dysbetalipoproteinemia, hypercholesterolemia, hyperlipidemia, or hypertriglyceridemia, or the presence of a lipid-lowering drug on a patient’s active medication list. CVD-related co-morbidity count was determined by a patient’s total number of diagnoses among DM, HTN, hyperlipidemia, and current smoking, with a range of 0-4.

Statistical analysis

Continuous variables are reported as mean (standard deviation, SD), and categorical variables are reported as frequencies and percentages. Univariate and multivariable analyses were conducted using logistic regression models producing crude and adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs), respectively. Clinically relevant variables determined \textit{a priori} and included in multivariable analysis regardless of univariate p-values and parameter estimates were: age (years), sex, race/ethnicity, CD4+ cell count (<200 cells/mm³, 200-350 cells/mm³, >350 cells/mm³), BMI (obese [BMI≥30 kg/m²] vs. non-obese [BMI<30 kg/m²]), DM, HTN, hyperlipidemia, current cigarette smoking and length of time in care (years). Multi-collinearity was assessed using variance inflation factors and model fit using the Hosmer-Lemeshow Goodness-of-Fit test. Predictive value of multivariable models was assessed using c-
statistics. Statistical significance was set at a 2-sided 0.05 level. Analyses were performed using SAS statistical software (Cary, NC), version 9.2.

Results

Framingham risk scores were calculated for 471 established patients meeting eligibility criteria. Of these, 402 (85%) met USPSTF criteria to receive ASA for primary prevention of CVD. Only 5 qualifying patients were of race/ethnicity other than African-American or white. They were excluded due to low numbers. The remaining 397 patients qualifying for ASA were included in the analyses.

Among the 397 qualifying study participants, the mean age (±SD) was 52.2 ± 5.9 years, 36% of the patients were African American, and 94% were male (Table 1). HIV risk group was men who have sex with men (MSM) in 66%, heterosexual transmission in 23%, and intravenous drug use (IVDU) in 11%. The majority of patients were insured (46% private insurance, 38% public insurance, 16% uninsured). Most patients (96%) were taking ARVs, HIV RNA was suppressed (<50 copies/mL) in 60%, and CD4+ cell count was >350 cells/mm³ in 70%.

Only 66 patients (17%) were prescribed ASA for primary CVD prevention. Notably, half of the 397 patients qualifying for ASA had intermediate to high risk for CVD-related events (10-year risk ≥10%); 39% were current smokers; 16% had DM, 62% HTN, 63% hyperlipidemia, and 20% were obese (BMI ≥30). Of the higher risk patients (10-year risk ≥10%), only 22% were prescribed ASA. No significant clustering of ASA prescription by individual primary HIV provider was observed.

Factors associated with ASA prescription

In univariate analysis, HTN, DM, hyperlipidemia, higher CVD-related co-morbidity count, higher 10-year risk for CVD events, and longer time in care were significantly associated with
increased odds of ASA prescription, whereas CD4 count <200 cells/mm³ was associated with decreased odds of ASA prescription. Most recent HIV RNA was not significantly associated with ASA prescription. (Table 2) In multivariable logistic regression analysis, factors significantly associated with ASA prescription included: DM (OR=2.60; 95% CI=1.28-5.27), hyperlipidemia (OR=3.42; 95% CI=1.55-7.56), and current smoking (OR=1.87; 95% CI=1.03-3.41), while adjusted for age, sex, race/ethnicity, CD4 count, BMI, HTN, and length of time in care. FRS and CVD-related co-morbidity count were not included in this model due to collinearity with multiple included variables. In a separate multivariable model (not shown), 10-year CVD risk per FRS was included in place of characteristics impacting the score (age, sex, DM, HTN, hyperlipidemia, and current smoking). For every 5% increase in 10-year CVD risk per FRS, odds of ASA prescription increased by 35% (OR=1.35, 95% CI=1.12–1.62), after adjusting for race/ethnicity, CD4 count, BMI, and length of time in care. An additional multivariable analysis was performed with CVD-related co-morbidity count replacing individual co-morbidities (not shown). After adjusting for sex, race/ethnicity, CD4 count, BMI, and length of time in care, odds of ASA prescription more than doubled for each increase in co-morbidity count (OR=2.13, 95% CI=1.51-2.99).

Discussion

Our study found ASA was markedly underprescribed among HIV-infected patients at risk for CVD events. Less than 20% of patients meeting the 2009 USPSTF criteria for ASA for primary prevention of CVD events were prescribed ASA. Even when the focus was narrowed to patients at intermediate to high risk for events (10-year risk ≥10%), which constituted 50% of the study sample, only 22% were on ASA.
We evaluated clinical, sociodemographic, and psychosocial characteristics associated with ASA prescription in HIV-infected patients, which have not been addressed in the extant literature. As expected, traditional CVD risk factors (DM, hyperlipidemia, and current smoking) were associated with increased odds of ASA prescription. An interesting observation was the escalating likelihood of ASA prescription with increasing CVD-related co-morbidity count. This suggests provider ASA prescribing patterns may be influenced more by co-occurrence of these diagnoses rather than by FRS and USPSTF guidelines, given that all 397 patients qualified for ASA based on these guidelines yet <20% were receiving it.

A 2005 national survey of primary care physicians, cardiologists, and obstetrician/gynecologists found that physician perception of CVD risk predicted recommendations regarding preventive measures including ASA use, but frequently differed from calculated risk using the FRS [22]. Provider dependence on clinical assessment alone in the absence of a CVD risk score carries the dual hazard of failure to prescribe ASA for patients in whom it is indicated, and unnecessary prescription of ASA in low risk patients for whom risk of gastrointestinal bleeding outweighs potential CVD benefit.

The low rate of ASA prescription observed in our study is consistent with findings from the only two similar published studies regarding use of anti-platelet therapy for prevention of CVD-related events in HIV-infected patients. One was conducted at Hospital Gandia in Spain, where among 120 consecutive HIV-infected patients, 30.8% qualified for primary prevention of CVD with ASA by the 2009 USPSTF guidelines but only 2 were taking ASA [23]. Another study in Germany found that of HIV-infected patients with 10-year Framingham risk 10-20%, only 2.4% were receiving anti-platelet therapy, and of those with 10-year risk >20%, only 31.9% were receiving anti-platelet therapy (the authors did not distinguish between antiplatelet therapy
for primary and secondary prevention) [24]. These two studies point to underprescribing of ASA in settings different than ours, highlighting a widespread need for greater attention among HIV providers on the role of ASA in CVD risk reduction.

Studies in the general population report racial disparities in ASA use, with whites more likely to use ASA for primary prevention of CVD-related events than African-Americans [25-27]. However, we noted no difference in ASA prescription between whites and African-Americans. We expected to see lower likelihood of ASA prescription in patients with more advanced HIV (CD4+ cell count <200 cells/mm³), presuming providers would be more focused on HIV management than general health maintenance issues like CVD risk reduction. While CD4+ cell count <200 cells/mm³ was significantly associated with lower odds of ASA prescription in univariate analysis, this association was not present in our multivariable model, potentially due to sample size. The absence of clustering of ASA prescribing by individual provider in our study suggests underutilization of ASA is a systemic problem, rather than a matter of deficiencies in the practice of select providers. The reasons behind low utilization of ASA for primary prevention of CVD by HIV providers is likely multifactorial. HIV providers may be unfamiliar with general population guidelines and recommendations. Of note, there is an absence of guidance in the HIV-specific literature [15, 28]. The relative impact of lack of clarity on the part of HIV providers regarding their role as primary care physicians, difficulty balancing the demands of caring for complex patients with myriad medical and social problems, patient-provider encounter time constraints, or some combination of these factors will require further study.

Results from this single-center study in the Southeastern U.S. may not be generalizable to other geographical regions or HIV clinical settings. The proportion of women was modest (6%),
limiting our ability to draw broad inferences about this segment of the HIV-infected population. Due to the observational design, we can identify associations but cannot determine causality, and there may be unmeasured confounders for which we have not accounted. As this study is cross-sectional, we do not take account of the potential variability of the FRS over time, and we also note the FRS has not been validated in an HIV-infected population and may under-predict CVD risk in patients on ART [29]. However, in the absence of a more precise, validated HIV-specific scoring system, it is appropriate to use the FRS [15,30].

We used a single, non-standardized blood pressure measurement in our risk calculations, and fasting lipids were not routinely available. However, the purpose of this study was to evaluate provider practices regarding ASA prescription. We feel our methods are reflective of how our providers would likely calculate CVD risk scores in practice. In addition, there is literature suggesting fasting lipids may not be necessary for CVD risk prediction [31]. Data on co-morbidities and ASA prescription was extracted from the EHR, and underreporting by providers may have affected our estimates, although we note our system of 100% quality assurance reduced this potential limitation and bias.

We observed significant underutilization of ASA in the prevention of first CVD-related events among HIV-infected persons engaged in medical care. HIV-specific guidelines regarding the use of ASA are needed. In the short term, interventions to improve HIV provider knowledge of and adherence to existing recommendations governing CVD prevention and management for the general population would be beneficial. The development and implementation of computerized decision support systems to enhance provider awareness of patients who would benefit from ASA for primary prevention of CVD-related events would likely advance adherence to this important prevention strategy.
Potential conflicts of interest:

G.A.B. has received research support from the Bristol-Myers Squibb Virology Fellows Research Training Program for the 2010-2012 academic years.

A.R.T. None

J.L.S. None

M.J.M. has received consulting fees (advisory board) from Merck Foundation, Bristol-Myers Squibb, and Gilead Sciences, and grant support to UAB from Tibotec Therapeutics, Pfizer, Inc, Bristol-Myers Squibb, and Definicare, LLC.

J.L.R. None

A.O.W. has consulted for Definicare, LLC.

M.S.S. has received grant support and/or has consulted for: Ardea Biosciences, Inc, Avexa Ltd, Boehringer Ingelheim Pharmaceuticals, Inc, Bristol-Myers Squibb, Gilead Sciences, Inc, GlaxoSmithKline, Merck & Co, Inc, Pfizer Inc, Tibotec Therapeutics, Vertex Pharmaceuticals, Inc, and ViiV Healthcare. He has equity ownership in Definicare, LLC.

J.H.W. has received research support from the Bristol-Myers Squibb, Pfizer, Tibotec Therapeutics, and Definicare, LLC, and has consulted for Bristol-Myers Squibb and Gilead Sciences.

Funding: This work was supported by the UAB Center for AIDS Research [P30-AI27767], CNICS [1R24 AI067039-1], the Mary Fisher CARE Fund, and a Bristol Myers-Squibb Virology Research Fellows training grant to G.A.B. M.J.M. is supported by the National Institute of Mental Health [grant number K23MH082641]. G.A.B. is supported in part by the Agency for Healthcare Research and Quality [grant number 5T32HS013852].
Acknowledgements:

Special thanks to Suneetha Thogaripolly for data retrieval, and to Kenneth Saag, MD, MSc, Monika M. Safford, MD, Todd M. Brown, MD, C. Suzanne Baker, RN, MPH, Ryan Outman, MS and the UAB Center for Outcomes and Effectiveness Research and Education (COERE). We thank the UAB 1917 Clinic Cohort staff and management for their assistance with this project (www.uab1917cliniccohort.org).

References

Figure 1: Flow diagram of participant selection of HIV-infected patients qualifying for primary prevention of CVD events with ASA at the UAB 1917 HIV Clinic.

Abbreviations: ASA, aspirin; CVD, cardiovascular disease; FRS, Framingham Risk Score; HIV, human immunodeficiency virus; USPSTF, United States Preventive Services Task Force.

Figure 2: Increasing odds of ASA prescription with increasing CVD-related co-morbidity count\(^a\) in HIV-infected patients (N=397) at the UAB 1917 HIV Clinic meeting 2009 USPSTF criteria \([16]\) for ASA for primary prevention of CVD events.

Abbreviations: ASA, aspirin; CI, confidence interval; CVD, cardiovascular disease; OR, odds ratio

\(^a\)Includes diabetes mellitus, hypertension, hyperlipidemia, and current smoking
Table 1. Characteristics of HIV-infected patients (N=397) at the UAB 1917 Clinic meeting 2009

USPSTF criteria [16] for ASA for primary prevention of CVD events

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ASA Prescribed (N=66)</th>
<th>ASA not Prescribed (N=331)</th>
<th>Total (N=397)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD or n (%)</td>
<td>Mean ± SD or n (%)</td>
<td>Mean ± SD or n (%)</td>
</tr>
<tr>
<td>Age, years</td>
<td>53.4 ± 6.0</td>
<td>52.0 ± 5.9</td>
<td>52.2 ± 5.9</td>
</tr>
<tr>
<td>Male</td>
<td>60 (91)</td>
<td>312 (94)</td>
<td>372 (94)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>48 (73)</td>
<td>206 (62)</td>
<td>254 (64)</td>
</tr>
<tr>
<td>African-American</td>
<td>18 (27)</td>
<td>125 (38)</td>
<td>143 (36)</td>
</tr>
<tr>
<td>HIV risk factor<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDU</td>
<td>4 (6)</td>
<td>41 (12)</td>
<td>45 (11)</td>
</tr>
<tr>
<td>MSM</td>
<td>43 (65)</td>
<td>218 (66)</td>
<td>261 (66)</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>19 (29)</td>
<td>71 (22)</td>
<td>90 (23)</td>
</tr>
<tr>
<td>Insured (private/public)</td>
<td>55 (83)</td>
<td>279 (84)</td>
<td>334 (84)</td>
</tr>
<tr>
<td>CD4<sup>c</sup> count (cells/mm<sup>3</sup>)<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 200</td>
<td>2 (3)</td>
<td>39 (12)</td>
<td>41 (10)</td>
</tr>
<tr>
<td>200 - 350</td>
<td>12 (18)</td>
<td>65 (20)</td>
<td>77 (19)</td>
</tr>
<tr>
<td>> 350</td>
<td>52 (79)</td>
<td>227 (69)</td>
<td>279 (70)</td>
</tr>
<tr>
<td>Plasma HIV-1 RNA <50 copies/mL</td>
<td>36 (55)</td>
<td>202 (61)</td>
<td>238 (60)</td>
</tr>
<tr>
<td>On antiretroviral therapy</td>
<td>62 (94)</td>
<td>320 (97)</td>
<td>382 (96)</td>
</tr>
<tr>
<td>Obesity (BMI ≥30 kg/m<sup>2</sup>)</td>
<td>14 (22)</td>
<td>66 (20)</td>
<td>80 (20)</td>
</tr>
<tr>
<td>10-year risk for CVD event ≥10%</td>
<td>43 (65)</td>
<td>157 (47)</td>
<td>200 (50)</td>
</tr>
<tr>
<td>Median 10-year risk for CVD event, percentage<sup>d</sup></td>
<td>13 (7-16)</td>
<td>8 (7-13)</td>
<td>10 (7-13)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>48 (73)</td>
<td>197 (60)</td>
<td>245 (62)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>21 (32)</td>
<td>41 (12)</td>
<td>62 (16)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>55 (83)</td>
<td>194 (59)</td>
<td>249 (63)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>29 (44)</td>
<td>127 (39)</td>
<td>156 (39)</td>
</tr>
<tr>
<td>Current substance use<sup>b</sup></td>
<td>1 (2)</td>
<td>26 (9)</td>
<td>27 (8)</td>
</tr>
<tr>
<td>At risk alcohol use<sup>b</sup></td>
<td>7 (11)</td>
<td>42 (14)</td>
<td>49 (13)</td>
</tr>
<tr>
<td>Current depression<sup>b</sup></td>
<td>9 (14)</td>
<td>44 (14)</td>
<td>53 (14)</td>
</tr>
<tr>
<td>Length of time in care (years)</td>
<td>8.4 ± 3.8</td>
<td>7.1 ± 3.8</td>
<td>7.3 ± 3.8</td>
</tr>
<tr>
<td>Number of visits in prior 12 months<sup&e</sup></td>
<td>2 (2-3)</td>
<td>2 (2-3)</td>
<td>2 (2-3)</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>8 (12)</td>
<td>48 (15)</td>
<td>56 (14)</td>
</tr>
</tbody>
</table>

Abbreviations: ASA, aspirin; BMI, body mass index; HIV, human immunodeficiency virus; IQR, interquartile range; IVDU, intravenous drug use; MSM, men who have sex with men; SD, standard deviation, USPSTF, United States Preventive Services Task Force

^a Column percents
bMissing data: HIV risk factor, 1; BMI, 3; alcohol use (AUDIT-C), 32; substance use (ASSIST), 35; depression score (PHQ-9), 27.

cBased on Framingham Risk Score for Coronary Heart Disease in men and Framingham Stroke Risk Score in women

dMedian (interquartile range)

cNon-urgent visits with a HIV primary provider
Table 2. Factors associated with ASA prescription among HIV-infected patients at the UAB 1917 Clinic meeting 2009 USPSTF criteria [16] for ASA for primary prevention of CVD events

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unadjusted OR (95%CI) for ASA Prescriptiona</th>
<th>p-value</th>
<th>Adjusted OR (95%CI) for ASA Prescriptionb</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per 10 years)</td>
<td>1.44 (0.94-2.19)</td>
<td>0.09</td>
<td>1.25 (0.75-2.09)</td>
<td>0.40</td>
</tr>
<tr>
<td>Male</td>
<td>0.61 (0.23-1.59)</td>
<td>0.31</td>
<td>0.58 (0.18-1.86)</td>
<td>0.36</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>African American</td>
<td>0.62 (0.34-1.11)</td>
<td>0.11</td>
<td>0.55 (0.27-1.11)</td>
<td>0.10</td>
</tr>
<tr>
<td>CD4 count (cells/mm3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>350</td>
<td>0.81 (0.41-1.60)</td>
<td>0.54</td>
<td>0.79 (0.37-1.66)</td>
<td>0.53</td>
</tr>
<tr>
<td>200 - 350</td>
<td>0.22 (0.05-0.96)</td>
<td>0.04</td>
<td>0.34 (0.08-1.51)</td>
<td>0.16</td>
</tr>
<tr>
<td><200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity (BMI \geq30 kg/m2)c</td>
<td>1.12 (0.58-2.15)</td>
<td>0.73</td>
<td>0.94 (0.45-1.95)</td>
<td>0.86</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3.30 (1.79-6.09)</td>
<td><0.001</td>
<td>2.60 (1.28-5.27)</td>
<td>0.01</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>3.53 (1.78-6.99)</td>
<td><0.001</td>
<td>3.42 (1.55-7.56)</td>
<td>0.002</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>1.26 (0.74-2.15)</td>
<td>0.40</td>
<td>1.87 (1.03-3.41)</td>
<td>0.04</td>
</tr>
<tr>
<td>Length of time in care (per year)</td>
<td>1.10 (1.02-1.18)</td>
<td>0.02</td>
<td>1.03 (0.95-1.12)</td>
<td>0.46</td>
</tr>
<tr>
<td>Plasma HIV-1 RNA <50 copies/mL</td>
<td>0.77 (0.45-1.31)</td>
<td>0.33</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>10-year risk for CVD event (per 5% increase)d,e</td>
<td>1.35 (1.13-1.62)</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CVD-related co-morbidity count (per increase of 1)e,f</td>
<td>2.15 (1.57-2.95)</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Abbreviations: ASA, aspirin; BMI, body mass index; CI, confidence interval; CVD, cardiovascular disease; HIV, human immunodeficiency virus; OR, odds ratio; USPSTF, United States Preventive Services Task Force.

NOTE: Bold indicates statistical significance at 0.05 level.

\(^a\)Logistic regression.

\(^b\)Clinically relevant factors included in the model (n=394). Variance inflation factor for all the included factors <3; Hosmer-Lemeshow goodness of fit test, p=0.93; C-statistic=0.749.

\(^c\)Missing data: BMI=3.

\(^d\)Based on Framingham Risk Score for Coronary Heart Disease in men and Framingham Stroke Risk Score in women

\(^e\)Used in separate analyses not shown on table, discussed in text

\(^f\)Number of conditions present among diabetes mellitus, hypertension, hyperlipidemia, and current smoking.
1,882 active patients
- ≥1 primary provider visit between 11 Dec 2009 and 10 Dec 2010

1,479 established patients
- ≥1 primary provider visit between 11 Dec 2008 and 10 Dec 2009

690 patients met age criteria
- 616 men age 45-79
- 74 women age 55-79

471 patients underwent calculation of Framingham Risk Score

402 patients qualified for ASA for primary prevention of CVD per 2009 USPSTF criteria

397 patients included in analyses

403 non-established patients excluded

522 men and 267 women did not meet age criteria

- 83 excluded for prior CVD
- 135 for potential contraindication to ASA
- 1 lacked data for FRS

69 patients did not require ASA for primary prevention of CVD

5 patients of race/ethnicity other than African American or white excluded for low numbers
Univariate OR=2.15; 95% CI: 1.57-2.95
Adjusted OR=2.13; 95% CI: 1.51-2.99