Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women

ANDREW R. COGGAN, ROBERT J. SPINA, DOUGLAS S. KING, MARC A. ROGERS, MARYBETH BROWN, PATTI M. NEMETH, AND JOHN O. HOLLOSZY

Section of Applied Physiology and Irene Walter Johnson Institute of Rehabilitation, Washington University School of Medicine, St. Louis, Missouri 63110

COGGAN, ANDREW R., ROBERT J. SPINA, DOUGLAS S. KING, MARC A. ROGERS, MARYBETH BROWN, PATTI M. NEMETH, AND JOHN O. HOLLOSZY. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J. Appl. Physiol. 72(5): 1780-1786, 1992.-Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 ± 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9–12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 ± 9.1 to 15.1 ± 8.1% (P < 0.001), whereas the percentage of type IIa fibers increased from 22.1 ± 7.7 to 29.6 ± 9.1% (P < 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P < 0.001) and type IIa fibers (10%; P < 0.05). Capillary density increased from 257 ± 43 capillaries/mm2 before training to 310 ± 48 capillaries/mm2 after training (P < 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P < 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase increased by 24–55% in response to training (P < 0.001–0.05). We conclude that, given an adequate training stimulus, the skeletal muscles of older men and women undergo adaptations to endurance exercise training similar to those observed in young people.

exercise; aging; muscle fiber type; muscle fiber area; capillarity; glycolytic enzymes; mitochondrial enzymes

ENDURANCE EXERCISE TRAINING of young people or animals induces major adaptations in skeletal muscle (cf. Ref. 19). These include conversion of type IIb muscle fibers into type IIa (3, 7); an increase in capillarization (4, 14); a small decrease in the activity of some glycolytic enzymes, particularly lactate dehydrogenase (6, 29); and a marked increase in mitochondrial respiratory enzyme levels (4, 18). These adaptations to endurance exercise play a major role in the decreased reliance on carbohydrate during submaximal exercise and therefore the increased endurance that results from exercise training (cf. Ref. 19).

It is unclear, however, whether endurance training can elicit similar adaptations in the skeletal muscles of older people. Denis et al. (14), for example, found no changes in fiber type distribution, in capillary-to-fiber ratio, or in the number of capillaries in contact with each muscle fiber after training of 57- to 69-yr-old men (although capillary density did increase because of an apparent decrease in muscle fiber area). Similarly, Aniansson and co-workers (5, 24) were unable to detect any changes in capillary density, capillary-to-fiber ratio, lactate dehydrogenase activity, citrate synthase activity, β-hydroxyacyl-CoA dehydrogenase activity, or mitochondrial volume in elderly men in response to training. Furthermore, Suominen et al. (31), using malate dehydrogenase as a marker for mitochondrial respiratory capacity, observed only minimal increases (5–15%) as a result of training in older men and women. The training programs employed in most of these studies (5, 24, 31), however, were brief and of low intensity and would be unlikely to induce significant adaptations in the muscles of young people. Although the training program used by Denis et al. (14) was more strenuous, many of these subjects had already been training for a number of years, reducing the probability of eliciting further adaptations.

In contrast to the above results, in a subsequent study Souominen et al. (30) found that 8 wk of exercise training, including up to 20 min of running each session, increased malate dehydrogenase and succinate dehydrogenase activities in the vastus lateralis of 56- to 70-yr-old men by 45%. More recently, Meredith et al. (22) demonstrated a 41% increase in skeletal muscle respiratory capacity in older men and women as a result of a strenuous 12-wk cycle ergometer exercise training program. Therefore these latter two studies (22, 30) suggest that aged human muscle retains the ability to adapt to endurance training, at least in terms of mitochondrial respiratory capacity, and that the failure of previous studies (5, 24, 31) to observe such an adaptation may have been due to an inadequate training stimulus. However, there are few data in the literature to indicate that the skeletal muscles of older people can adapt to endurance training with alterations in fiber subtype distribution, decreases in glycolytic enzyme activity, or increases in capillarization.

Because of the uncertainty regarding the capacity of the muscles of older people to adapt to endurance exercise training, we obtained needle biopsy samples from the lateral gastrocnemius muscles of older men and
women before and after they completed a strenuous 9- to
12-mo endurance training program. These samples were
analyzed for fiber type distribution, fiber areas, capillari-
zation, and the activities of selected glycolytic and mito-
chondrial respiratory enzymes. The results demonstrate
that, given an adequate training stimulus, the skeletal
muscles of older people undergo adaptations to endur-
ance training similar to those observed in young people.

METHODS

Subjects and experimental design. Thirty initially seden-
tary men and women, 60–70 yr old, volunteered for this
study. Twelve of the men and 11 of the women under-
went endurance exercise training. An additional five men
and two women also volunteered to exercise but lived too
far from the medical center or otherwise did not have
sufficient time to participate in the training program.
These subjects were therefore studied as nonexercising
controls. The present subjects were randomly selected
from a larger group of men and women participating in
an investigation of the cardiovascular and metabolic ef-
fects of endurance exercise training in older adults, the
design of which recently has been described in detail (21).
The present subjects did not differ significantly from this
larger group in terms of either their physical characteris-
tics before training [e.g., weight, percent body fat, maxi-
mal \(\dot{V}O_2 \) uptake \((\dot{V}O_2\text{max}) \) or in terms of their response to
training (e.g., decrease in weight and percent body fat,
increase in \(\dot{V}O_2\text{max} \)). The study protocol was approved
by the Human Studies Committee of the Washington
University School of Medicine, and written informed
consent was obtained from each individual.

All of the subjects were nonsmokers who were free of
detectable cardiovascular, metabolic, or musculoskeletal
disease. Before entry into the study, each subject’s health
status was assessed by means of a medical history, physi-
cal examination, hematologic evaluation, SMA-12 blood
chemistry, urinalysis, 75-g oral glucose tolerance test,
and chest X-ray. In addition, each subject underwent two
graded treadmill tests to exhaustion with blood pressure
and electrocardiogram monitoring. The first of these
tests, using a Bruce exercise protocol, was used to screen
for cardiovascular abnormalities. Provided that none
were found, a second exercise test was subsequently per-
formed with the use of an individually adjusted walking
or running protocol (21) to determine \(\dot{V}O_2\text{max} \). During
this second test, \(\dot{O}_2 \) uptake \((\dot{V}O_2) \) was measured every 30 s
during exercise with an automated open-circuit system
that incorporated a dry gas meter (Parkinson-Cowan
CD-4), mixing chamber, and electronic \(O_2 \) and \(CO_2 \) ana-
lyzers (Applied Electrochemistry S3-A and Beckman
LB 2, respectively). \(\dot{V}O_2\text{max} \) was defined as the mean of
the two highest consecutive 30-s \(\dot{V}O_2 \) measurements. For
assurance that \(\dot{V}O_2\text{max} \) had indeed been reached, at least
two of the following criteria had to be met: a plateau in
\(\dot{V}O_2 \) despite an increase in treadmill speed and/or grade,
a respiratory exchange ratio >1.10, and a heart rate
within 10 beats/min of age-predicted maximal heart rate.

Body composition was assessed via hydrostatic weigh-
ing (8), with residual lung volume determined by \(O_2 \) dilu-
tion (33). Calf circumference was measured at the point
of greatest girth with the use of a Gulick tape (Country
Technology, Gay Mills, WI). To minimize potential vari-
ability, all calf circumference measurements were per-
formed by the same individual.

After this preliminary testing, subjects in the exercise
training group participated in a 2- to 3-mo flexibility ex-
ercise program, followed by 9 to 12 mo of endurance exer-
cise training. This training program has been described
detail previously (21). Briefly, flexibility training con-
sisted of various static stretching movements involving
all major joints and muscle groups. The flexibility pro-
gram was intended to reduce the likelihood of injury dur-
ing the subsequent endurance exercise program and was
not intended to induce any increase in muscular or car-
diovascular fitness. During the subsequent endurance
exercise training program, the subjects exercised primar-
ily by walking and/or jogging on an indoor track or on a
treadmill. A few of the participants also performed addi-
tional exercise on cycle and/or rowing ergometers.
Training was performed for ~45 min/day ~4 days/wk,
and the intensity of exercise was progressively increased
from 60–70% of maximal heart rate during the first 3 mo
of training to 80–85% of maximal heart rate by the end of
training. Individual exercise prescriptions were updated
weekly. To monitor improvements due to training and to
provide information for adjusting exercise prescriptions,
we remeasured \(\dot{V}O_2\text{max} \) every 3 mo during training. As
previously described (21), most of the increase in \(\dot{V}O_2\text{max} \)
occurred in the first 6 mo of training; subjects who failed
to demonstrate a further increase in \(\dot{V}O_2\text{max} \) between 6
and 9 mo of training were therefore given the option of
exiting the study after 9 mo of training. In the present
group of subjects, 17 trained for 9 mo, whereas the other
6 completed the full 12 mo of training.

To be able to confidently ascribe possible skeletal
muscle adaptations as being the result of endurance
training, initial muscle biopsies in the exercise group
were obtained after completion of flexibility training but
before endurance training was begun. Thus, if significant
muscular adaptations had been induced by flexibility
training, this approach would have resulted in an under-
estimation of the effects of increased physical activity in
older adults. However, no significant differences were
observed between the pretraining biopsies from the exer-
cise group (obtained after the flexibility program) and
those from the control group, suggesting that the effects
of the flexibility program on skeletal muscle characteris-
tics, if any, were minimal.

Muscle biopsy samples and measurements of body
composition, calf circumference, and \(\dot{V}O_2\text{max} \) were
obtained from the control subjects on two occasions, ~12
mo apart. They were instructed to make no major
changes in their lifestyle (e.g., diet, exercise habits) in the
interim period. Posttesting interviews indicated that
they complied with these instructions.

Muscle sampling and analyses. Biopsy samples were
obtained from the lateral head of the right gastrocnemius
muscle with a 5-mm Bergström needle (Stille-Werner,
Ronkonkoma, NY). One portion of the muscle specimen
was oriented longitudinally in embedding medium, fro-
zen in liquid \(N_2 \)-cooled isopentane, and stored in liquid
\(N_2 \). Transverse sections (10 \(\mu \)m) were subsequently cut
on a cryostat maintained at -20°C. Muscle fiber type distribution (i.e., the percentage of type I, type IIa, type IIb, and type IIc fibers) was determined in sections stained for adenosinetriphosphatase activity at pH 9.4 after preincubation at pH 4.3, 4.6, and 10.3 (25). On average, 436 ± 129 (range 138-1,199) fibers were used in making these determinations. Type IIc fibers constituted <0.5% of any biopsy sample and were therefore excluded from further analyses. Muscle fiber areas were determined by projecting samples at ×150 magnification onto a digitizer interfaced with an IBM computer, choosing 1 fiber at random, and then measuring the areas of the nearest 25 fibers of each type. Capillarization was determined by staining additional sections with periodic acid-Schiff's reagent after removal of glycogen with a 1% amylase solution (2). Sections were projected at ×500 magnification, and capillary density, capillary-to-fiber ratio, and the number of capillaries in contact with each muscle fiber were determined in four to six randomly selected 0.25-mm² regions.

The remainder of the sample was frozen and stored in liquid N₂. A 5- to 10-kg portion of each sample was subsequently homogenized in 50 vol of sodium phosphate buffer (20 mM, pH 7.4, containing 0.5 mM EDTA, 5 mM β-mercaptoethanol, 0.02% bovine serum albumin, and 50% glycerol) and was assayed as previously described (12, 13) for phosphorylase, phosphofructokinase, lactate dehydrogenase, succinate dehydrogenase, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase activities by use of the methods of Chi et al. (11). All assays were conducted at room temperature (24 ± 0.5°C).

Statistical analyses. Data from the nonexercising control subjects were compared with the use of paired t tests. Data from the exercise group were analyzed by two-way analyses of variance, with gender as a between-subjects factor and training as a within-subjects factor. Significant differences were identified by P ≤ 0.05. Although these analyses revealed significant main effects for training and gender for a number of variables, no significant interaction effects were observed, indicating that the effects of training were similar in men and women. Therefore the P values reported herein refer to these significant main effects. For comparison purposes, however, data for men and women are presented separately as means ± SD.

RESULTS

Averaged over the entire training period, the subjects exercised for 44 ± 4 min/day 3.9 ± 0.6 days/wk at 81 ± 5% of maximal heart rate for 9.9 ± 1.4 mo. Energy expenditure during training (estimated from the average O₂ cost of various activities; cf. Ref. 21) averaged 1,515 ± 591 kcal/wk.

Physical characteristics (Table 1). Training resulted in a 4% decrease in body weight in both men and women. This decrease in body weight was entirely due to a reduction in percent body fat, as fat-free mass did not change with training. Despite this decrease in adiposity, calf circumference increased significantly with training, with 18 out of the 29 subjects demonstrating an increase in calf circumference. This ~1% increase in calf circumference corresponds to an ~3% increase in lower leg cross-sectional area.

$V_{O₂,max}^\text{in (l/min)}$ increased by 24% in the men and by 21% in the women as a result of training. The magnitude of this increase was not significantly different between men and women. When expressed relative to body weight, $V_{O₂,max}^\text{in}$ increased by 29% in the men and 26% in the women. Again, the magnitude of the relative improvement in $V_{O₂,max}^\text{in}$ did not differ significantly between men and women.

Maximal heart rate demonstrated a slight but nonsignificant decrease with training in the men, whereas maximal heart rate did not change with training in the women.

Muscle fiber type distribution and fiber areas (Table 2). The percentages of type I, type IIa, and type IIb fibers in the lateral gastrocnemius muscle did not differ between men and women. The areas of all three fiber types were greater in men than in women, and this difference was greatest for type IIb fibers. Consequently, the type IIb-to-type I area ratio was smaller in women than in men.

The percentage of type I fibers did not change with training. However, training resulted in a significant decrease in the percentage of type IIb fibers and a corresponding increase in the percentage of type IIa fibers. The magnitude of these shifts in the type II fiber subpopulation tended to be greater in men than in women, but this difference was not statistically significant.

Training resulted in 10 and 12% increases in the areas of the type I and the type IIa fibers, respectively. Although type IIb fiber area increased by a similar amount (11%), this latter increase was not statistically significant ($P = 0.09$). Because the increase in fiber area was of similar magnitude in all three fiber types, the type IIa-to-type I and type IIb-to-type I area ratios did not change with training.

Muscle capillarization (Table 3). Capillary-to-fiber ratio and the number of capillaries in contact with each muscle fiber were lower in women than in men both before and after training. However, because of the women's smaller muscle fibers, capillary density did not differ between men and women.

The number of capillaries per square millimeter increased by 21% in response to endurance training. This increase in capillary density was the result of significant increases in the capillary-to-fiber ratio and the number of capillaries in contact with each muscle fiber.

Muscle enzyme activities (Table 4). Phosphofructokinase activity was higher and succinate dehydrogenase and citrate synthase activities were lower in women than in men. The activities of the other three enzymes examined (phosphorylase, lactate dehydrogenase, and β-hydroxyacyl-CoA dehydrogenase) did not differ between men and women.

Phosphorylase and phosphofructokinase activities did not change with training, whereas lactate dehydrogenase activity decreased by 21% as a result of training. In contrast, the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase increased by 24–55% as a result of the exercise program.

Control subjects. No significant change was observed for any variable in the five older men and two older women who served as nonexercising controls (data not shown).
DISCUSSION

In a number of prior studies, significant skeletal muscle adaptations did not occur in older people in response to endurance exercise training (5, 14, 24, 31). However, both Souminen et al. (30) and Meredith et al. (22) have observed significant increases in muscle mitochondrial respiratory capacity as a result of vigorous endurance training of elderly individuals, and Frontera et al. (16) have demonstrated a similar increase in response to a strenuous strength training program. Additionally, we have found that fiber type distribution, capillary density, and mitochondrial enzyme activities are similar in master endurance athletes and comparably trained young athletes (13). On the basis of these findings, we hypothesized that the muscles of older people would retain the ability to adapt normally to exercise training if the training stimulus were of adequate intensity and duration.

The present results support this hypothesis. Thus, although the percentage of type I fibers did not change with training, the percentage of type IIb fibers decreased, whereas the percentage of type IIa fibers increased. Accompanying this shift in muscle fiber type were significant increases in the cross-sectional area of the type I and type IIa fibers. Calf circumference also increased significantly with training, despite a significant decrease in percent body fat. Similar shifts in the type II fiber population [which are believed to reflect changes in the predominant myosin heavy chain being synthesized (7)] also occur in young people in response to endurance training (3, 7). Likewise, although endurance training is not normally considered a major stimulus for muscle hypertrophy, moderate increases in muscle size are frequently observed with endurance training of young subjects (4, 18, 26). The present results therefore suggest that aged human muscle retains some plasticity in the type and quantity of myosin that is expressed. Despite the increase in fiber size observed in the present study, however, fat-free mass did not change in response to training, suggesting that this hypertrophy must have been confined to too small a fraction of the total muscle mass to be detectable via hydrostatic weighing. Furthermore, because the magnitude of the increase in fiber size was similar in all three fiber types (although not statistically significant in the type IIb fibers), the type IIa-to-type I and type IIb-to-type I area ratios were unaltered by training and therefore remained significantly below those we have observed in the gastrocnemius muscles of untrained young men and women (12). Thus the exercise program did not reverse the relative type II atrophy associated with aging. Interestingly, studies of strength training of older people have also failed to consistently demonstrate increases in the type II-to-type I area ratio, even when large increases occurred in strength and in muscle fiber areas (10, 17). Similarly, the type II to type I area ratio in master weight lifters (20) is not as high as that in young strength-trained men (1, 32), although it is equal to that in young sedentary men and consequently is greater than that in older sedentary men (20). These results suggest that the relative type II atrophy that occurs with aging may be due to factors other than, or in addition to, simple disuse.

TABLE 1. Physical characteristics of the subjects

<table>
<thead>
<tr>
<th>Gender</th>
<th>Training</th>
<th>Effect</th>
<th>Training</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>Pretraining</td>
<td>Posttraining</td>
<td>Pretraining</td>
<td>Posttraining</td>
</tr>
<tr>
<td>Men</td>
<td>65±3</td>
<td>64±3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>167±6</td>
<td>167±6</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Height, cm</td>
<td>178±7</td>
<td>178±7</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>81.4±7.9</td>
<td>81.4±7.9</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Percent fat</td>
<td>77.8±6.3</td>
<td>77.8±6.3</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>FFM, kg</td>
<td>24.9±3.9</td>
<td>24.9±3.9</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Calf circ, cm</td>
<td>58.6±5.5</td>
<td>58.6±5.5</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Area, pm²</td>
<td>37.2±2.4</td>
<td>37.2±2.4</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>V0₂max</td>
<td>l/min</td>
<td>210±20</td>
<td>210±20</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>ml·kg⁻¹·min⁻¹</td>
<td>2.72±0.44</td>
<td>2.72±0.44</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>HRmax</td>
<td>beats/min</td>
<td>210±12</td>
<td>210±12</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values are means ± SD for 12 men and 11 women. FFM, fat-free mass; calf circ, calf circumference; VO₂max, maximal O₂ uptake; HRmax, maximal heart rate.

TABLE 2. Skeletal muscle fiber type distribution and fiber areas

<table>
<thead>
<tr>
<th>Gender</th>
<th>Training</th>
<th>Effect</th>
<th>Training</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I, %</td>
<td>Pretraining</td>
<td>Posttraining</td>
<td>Pretraining</td>
<td>Posttraining</td>
</tr>
<tr>
<td>Men</td>
<td>58.6±14.6</td>
<td>54.5±12.6</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>59.2±9.9</td>
<td>56.1±11.4</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Type IIa, %</td>
<td>22.0±8.9</td>
<td>31.4±10.0</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Type IIb, %</td>
<td>19.4±10.0</td>
<td>14.1±9.5</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Area, μm²</td>
<td>Type I</td>
<td>5,291±1,004</td>
<td>5,966±846</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Type IIa</td>
<td>5,918±1,304</td>
<td>6,286±1,416</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Type IIb</td>
<td>5,538±1,558</td>
<td>6,186±1,358</td>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Area ratio</td>
<td>Type IIa/Type I</td>
<td>1.12±0.12</td>
<td>1.06±0.17</td>
<td>NS</td>
</tr>
<tr>
<td>Type IIb/Type I</td>
<td>1.06±0.26</td>
<td>1.05±0.29</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SD for 12 men and 11 women. * P < 0.09.
Despite the increases in muscle fiber size, capillary density increased by 21% in response to training. This increase in capillary density was the result of the formation of new capillaries, as indicated by the 25–30% increases in the capillary-to-fiber ratio and in the number of capillaries around each muscle fiber. These results are again similar to those observed after endurance training of young people (4) but contrast with results of Aniansson and Gustafsson (5) and Denis et al. (14), who found no evidence of capillary proliferation in older men as a result of endurance training. In support of the concept that capillary neoformation can occur in older adults, Frontera et al. (16, 17) found that intense strength training of the vastus lateralis muscle of older men, which resulted in a 28–43% increase in muscle fiber size, was associated with a smaller (10%) but still significant increase in capillary-to-fiber ratio.

We have previously reported that the increase in \(V_{\text{O}_2\text{max}} \) in the present study population appeared to be mostly the result of an increase in peak cardiac output (15). Nevertheless, the increase in capillary bed volume with training may still have contributed to the increase in \(V_{\text{O}_2\text{max}} \) by preventing a decrease in capillary mean transit time and therefore \(O_2 \) extraction despite (presumably) a training-induced increase in maximal muscle blood flow. Maintenance or improvement of \(O_2 \) extraction during maximal exercise also may have been aided by the significant increase in muscle mitochondrial respiratory capacity (see below).

The exercise program also resulted in changes in muscle enzyme activities similar to those observed after endurance training of young people (4, 6, 18, 19, 29). Thus, although phosphorylase and phosphofructokinase activities did not change with training, lactate dehydrogenase activity decreased and the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and \(\beta \)-hydroxyacyl-CoA dehydrogenase increased. Several prior studies have found no changes in lactate dehydrogenase or mitochondrial respiratory enzyme activities in the muscles of older humans in response to endurance training (5, 24, 31), probably due to an inadequate training stimulus. Other reports (16, 22, 30) support the present observation of an adaptive increase in mitochondrial respiratory capacity in response to training in older people. This increase in respiratory capacity is believed to play a major role in the smaller blood lactate accumulation and slower rate of carbohydrate utilization observed during exercise performed at the same absolute intensity after training (15, 19, 22, 27, 30).

Despite these structural and biochemical adaptations to endurance training, muscle capillarization and mitochondrial respiratory enzyme activities after training of the older subjects of the present study were similar to those young untrained men and women (12). Thus, although 9–12 mo of training reversed the decreases in these parameters associated with aging, it did not increase these values above the young untrained range. Along the same lines, although the decrease in type IIb fiber percentage and the increases in type I and type IIa fiber area in the present study were statistically significant, they were relatively small compared with the changes observed with endurance training of young people (3, 4, 7, 18, 26). These results might be construed as indicating that aging results in a diminished ability of skeletal muscle to adapt to endurance training. A more likely explanation for these observations, however, is that the volume and intensity of exercise performed by the subjects were relatively low in absolute terms, even after 9–12 mo of training (e.g., walking/jogging ~20 km/wk at ~125 m/min). Thus it is possible that skeletal muscle adaptations to training would have been greater if the subjects had run faster or farther. In keeping with

TABLE 3. Skeletal muscle capillarization

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Gender Effect</th>
<th>Training Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretraining</td>
<td>Posttraining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capillaries/mm²</td>
<td>254±40</td>
<td>295±45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capillaries/fiber</td>
<td>1.65±0.40</td>
<td>2.08±0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capillaries in contact</td>
<td>4.18±0.98</td>
<td>5.19±0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>each muscle fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SD for 12 men and 11 women.

TABLE 4. Skeletal muscle enzyme activities

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Gender Effect</th>
<th>Training Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretraining</td>
<td>Posttraining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>6.94±2.45</td>
<td>6.24±1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinate dehydrogenase</td>
<td>50.3±27.9</td>
<td>44.5±21.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>1.11±0.29</td>
<td>1.83±0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Hydroxyacyl-CoA dehydrogenase</td>
<td>2.97±0.71</td>
<td>3.83±1.10</td>
<td>(P < 0.001)</td>
<td>(P < 0.05)</td>
</tr>
</tbody>
</table>

Values are means ± SD for 12 men and 11 women. Enzyme activities are expressed as mol·kg protein⁻¹·h⁻¹ measured at room temperature (24 ± 0.5°C).
this hypothesis, we have found previously that fiber type
distribution, capillarization, and mitochondrial respira-
tory enzyme activities are similar in comparably trained
young and master endurance athletes (13). Studies of
rats also indicate that the increase in mitochondrial respira-
tory capacity due to training is similar in young and old
animals subjected to the same training program (9, 34).

No statistical interactions between training and
gender were found, indicating that the effects of training
were similar in older men and women. However, signifi-
cant differences in skeletal muscle characteristics be-
tween genders were observed for a number of variables,
both before and after training. For example, the cross-
sectional area of all three fiber types were significantly
larger in men than in women. This was especially true of
the type IIb fibers, so that the type IIb-to-type I area
ratio was also higher in men. Capillary density in men
was equal to that of women, despite the mens’ larger
muscle fibers, because the men had higher capillary-to-
fiber ratios and more capillaries in contact with each
muscle fiber. Enzyme activities also differed between
men and women, with phosphofructokinase activity be-
ing lower in men than in women, and the opposite being
observed for succinate dehydrogenase and citrate syn-
thase activities. These gender differences are similar
to previous observations of young people (12, 23, 28).
Others, however, have reported that phosphofructoki-
Bnase is higher in young men than in young women (28),
whereas we have consistently observed the opposite in both younger (12) and older (present study)
people. We have no explanation for this discrepancy.

In summary, 9–12 mo of endurance exercise training of
~65-yr-old men and women resulted in changes in fiber
subtype distribution, fiber size, capillarization, and glyco-
lytic and mitochondrial respiratory enzyme activities
similar in relative magnitude to those observed in young
people. These results add to the increasing body of evi-
dence indicating that, contrary to some prior reports,
older men and women retain the ability to adapt to exer-
cise training.

The authors thank Steve A. Alway and Lisa A. Mendenhall for help-
ful comments in the preparation of the manuscript.

This study was supported by National Institute on Aging Program
Project Grant AG 05652. A. R. Coggan, D. S. King, and R. J. Spina
were supported by National Institute on Aging Research Service Award
AG 00078. M. A. Rogers was supported by National Heart, Lung, and
Physiology, Washington University School of Medicine, St. Louis, MO
were supported by National Institute on Aging Research Service Award
63110; D. S. King, Dept. of Physical Education, Iowa State University,
Ames, IA 50011; M. A. Rogers, Dept. of Kinesiology, University of
Maryland, College Park, MD 20742; M. Brown, Program in Physical
Therapy, Washington University School of Medicine, St. Louis, MO
36110; P. M. Nemeth, Dept. of Neurology, Washington University
School of Medicine, St. Louis, MO 63110.

Address for reprint requests: A. R. Coggan, Exercise Physiology Lab-
oratory, School of Health, Physical Education, and Recreation, Ohio State
University, Columbus, OH 43210.

Received 19 July 1991; accepted in final form 18 November 1991.

REFERENCES

1. ALWAY, S. E., W. H. GRUMBET, W. J. GONYEA, AND J. STRAY-GUN-
DERSEN. Contrasts in muscle and myofibers of elite male and female

2. ANDERSEN, P. Capillary density in skeletal muscle of man. Acta

3. ANDERSEN, P., AND J. HENRIKSSON. Training induced changes in
the subgroups of human type II skeletal muscle fibres. Acta Physiol.

4. ANDERSEN, P., AND J. HENRIKSSON. Capillary supply of the quadrici-
peps femoris muscle of man: adaptive response to exercise. J. Phys-

5. ANNIANSSON, A., AND E. GUSTAFSSON. Physical training in elderly
men with special reference to quadriceps muscle strength and mor-

6. APPLE, F. S., AND M. A. ROGERS. Skeletal muscle lactate dehydro-
gemase isozyme alterations in men and women marathon runners.

7. BAUMANN, H., M. JAGGI, F. SOLAND, H. HOWARD, AND M. C.
SCHAUB. Exercise training induces transitions of myosin isoform
subunits within histochemically typed human muscle fibers.

8. BROZEK, J., F. GRANDE, J. T. ANDERSON, AND A. KEYS. Denstro-
nometric analysis of body composition: revision of some quantitative

9. CARTER, G. C., AND R. P. FARRAR. Comparison of muscle respira-
tory capacity and VO_{2max} between young and old exercise-trained

10. CHAREST, S. L., L. MECNOV, G. PYKA, C. SNOW-HARTER, D.
GUIDO, R. A. WISWELL, AND R. MARCUS. Muscle hypertrophy re-
V, response to resistance training in older women. J. Appl. Physiol.

11. CHI, M.-Y., C. S. HINTZ, E. F. COYLE, W. H. MARTIN, J. L. IVY,
P. M. NEMETH, J. O. HOLLOSY, AND D. H. LOWRY. Effects of de-
training on enzyme activities of energy metabolism in individual
human muscle fibers. Am. J. Physiol. 244 (Cell Physiol. 13): C276-C287,
1983.

12. COGGAN, A. R., R. J. SPINA, D. S. KING, M. A. ROGERS, M. BROWN,
P. M. NEMETH, AND J. O. HOLLOSY. Histochemical and enzymatic
comparison of the gastrocnemius muscle of young and elderly men

13. COGGAN, A. R., R. J. SPINA, M. A. ROGERS, D. S. KING, M. BROWN,
P. M. NEMETH, AND J. O. HOLLOSY. Characteristics of skeletal

GEYSSANT, AND J.-P. LACOUR. Effects of endurance training on
capillary supply of human skeletal muscle on two age groups (20

15. EHSANI, A. A., T. OGAWA, T. R. MILLER, R. J. SPINA, AND S. M.
JILKA. Exercise training improves left ventricular systolic function

EVANS. Strength training and determinants of VO_{2max} in older

17. FROINTERA, W. R., C. N. MEREDITH, K. P. O’REILLY, H. G. KNUTT-
GEN, AND W. J. EVANS. Strength conditioning in older men: skele-
tal muscle hypertrophy and improved function. J. Appl. Physiol.

18. GOLLCZK, P. D., R. B. ARMSTRONG, B. SALVIN, C. W. SAUBERT,
W. L. SEMBROWICH, AND R. E. SHEPHERD. Effect of training on
myosin isoform transitions and muscle composition of human skeletal

19. HOLLOSY, J. O., AND E. F. COYLE. Adaptations of skeletal muscle
endurance exercise and their metabolic consequences. J. Appl.

20. KLOTTGAARD, H., M. MANTONI, S. SCHIAFFINO, S. AISUNI, L.
GORZA, C. LAURENT WINTER, P. SCHINNOHR, AND B. SALVIN.
Function, morphology, and protein expression of ageing skeletal muscle: a
cross-sectional study of elderly men with different training back-

21. KOHRT, W. M., M. T. MALLEY, A. R. COGGAN, R. J. SPINA, R. N.
MEREDITH, E. A. OGAWA, A. EHSANI, R. E. BOUREY, W. H. MARTIN,
AND J. O. HOLLOSY. Effects of gender, age, and fitness level on the response
of VO_{2max} to training in 60- to 71-yr-olds. J. Appl. Physiol. 71: 2004-

22. MEREDITH, C. N., W. R. FROINTERA, E. C. FISHER, V. A. HUGHES,
J. C. HERLAND, J. EDWARDS, AND W. J. EVANS. Peripheral effects of
endurance training in young and old subjects. J. Appl. Physiol.

23. NYGAARD, E. Skeletal muscle fiber characteristics in young

24. ÖRLANDER, J., AND A. ANNAHIG. Effects of physical training on
MUSCULAR ADAPTATIONS TO TRAINING IN 60- TO 70-YR-OLDS 1785

