Supplementary Materials

A variant upstream of *IFNL3* (*IL28B*) creating a novel interferon gene *IFNL4* is associated with impaired clearance of hepatitis C virus

Ludmila Prokunina-Olsson, Brian Muchmore, Wei Tang, Ruth M. Pfeiffer, Heiyoung Park, Harold Dickensheets, Dianna Hergott, Patricia Porter-Gill, Adam Mumy, Indu Kohaar, Sabrina Chen, Nathan Brand, McAnthony Tarway, Luyang Liu, Faruk Sheikh, Jacquie Astemborski, Herbert L. Bonkovsky, Brian R. Edlin, Charles D. Howell, Timothy R. Morgan, David L. Thomas, Barbara Rehermann, Raymond P. Donnelly, Thomas R. O'Brien.

Supplementary Tables

Supplementary Table 1. PCR primers and assays

Supplementary Table 2. Description of novel transcripts and proteins identified upstream of *IFNL3* gene

Supplementary Table 3. Allele frequencies of ss469415590, rs12979860 and rs8099917 in HapMap populations

Supplementary Table 4. Analysis of linkage disequilibrium in 1000 Genomes Project

Supplementary Table 5. Characteristics of the Virahep-C and HALT-C participants

Supplementary Table 6. Characteristics of the UHS and ALIVE participants

Supplementary Table 7. Comparison of rs12979860 and ss469415590 genotypes for predicting decrease in HCV RNA load

Supplementary Table 8. Comparison of rs12979860 and ss469415590 genotypes for predicting response to pegIFN-α/RBV treatment in European-Americans from Virahep-C study

Supplementary Table 9. Comparison of rs12979860 and ss469415590 genotypes for predicting response to pegIFN-α/RBV treatment in European-Americans from HALT-C study

Supplementary Table 10. Association of rs12979860 and ss469415590 with spontaneous clearance of HCV infection among European-American injection drug users in the Urban Health Study (UHS)

Supplementary Table 11. Analysis of genetic variants based on Sanger sequencing and TaqMan genotyping of HapMap samples

Supplementary Table 12. Analysis of pair-wise linkage disequilibrium (r^2) within *IFNL3/IFNL4* region in HapMap samples

Supplementary Table 13. Haplotype analysis in the *IFNL3/IFNL4* region in HapMap samples and participants of Virahep-C study

Supplementary Figures

Supplementary Fig. 1. DNA and protein sequence analysis of the regions upstream of the *IFNL2* and *IFNL3* genes

Supplementary Fig. 2. Sequence of *IFNL4* gene and genetic variants found to be polymorphic at least in one population by sequencing of 270 HapMap samples (CEU, YRI and CHB/JPT)

Supplementary Fig. 3. Activation of the Interferon Stimulated Response Element (ISRE) - Luc reporter in HepG2 cells transiently co-transfected with IFNL4 expression constructs carrying either the Halo-tag or a FLAG-tag

Supplementary Fig. 4. Activation of the interferon-stimulated response element (ISRE)-Luc reporter and mRNA expression of receptors for type–I IFNs (*IFNAR1* and *IFNAR2*) and type–III IFNs, *IFNLR1* (*IL28R1*) and *IL10R2*, in human HepG2, 293T and HeLa cell lines

Supplementary Fig. 5. Outline of expression constructs for the 6 protein isoforms

Supplementary Fig. 6. Analysis of IFNL4 expression in HepG2 cells and primary human hepatocytes

Supplementary Fig. 7. Analysis of IFNL4 expression in 293T and HepG2 cells transiently transfected with IFNL4-Halo construct or an empty Halo-tag vector

Supplementary Fig. 8. Functional effects of IFNL4 over-expression in HepG2 cells

Supplementary Fig. 9. Prediction of IFNL4 protein based on genomic sequences of 45 species available in UCSC genome browser

Supplementary Fig. 10. Outline of mRNA transcripts within *IFNL4* region and their detection by RNA-sequencing and an allele-specific expression assay

Supplementary Fig. 11. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis of allelespecific expression of transcripts with ss469415590-TT and ΔG alleles and expression of *IFNL3* (*IL28B*), *IFNL1* (*IL29*) and *PPIA* (endogenous control) in various samples

Supplementary Note. Clinical Studies

primer	sequence	comments
IFNL4_cloning_F	ATGCGGCCGAGTGTCTGGGCC	additional overhangs were added for cloning into
IFNL4_cloning_R	GAGGCAAGGCCCAGAGTGTGCAG	specific vectors
IFNL4_F_seq_intr1_3'UTR	GTAAGTCACCGCCCAGCCCCTGTGCC	1397-bp amplicon for genotyping by sequencing of IFNL4 variants within intron
IFNL4_R_seq_intr1_3'UTR	CCCATTGACTGAGAGCCTCGCCCGG	1-exon 5
IFNL4_ex1_seq_F IFNL4_ex1_seq_R	CGAACCAGGGTTGAATTGC GCACTGCAGACAGGAGTGAG	628-bp amplicon for genotyping by sequencing of IFNL4 variants within exon 1 and 5'UTR
TaqMan expression assays with MCB probes		
MGB probes ss469415590_IFNL4_F	GCCTGCTGCAGAAGCAGAGAT	ABI expression buffer
ss469415590_IFNL4_R	GCTCCAGCGAGCGGTAGTG	RNA must be DNAseI-treated
ss469415590_IFNL4_VIC (TT		KNA must be DNAser-realed
allele) ss469415590_IFNL4 FAM (ΔG ,	ATCGCAG <u>AA</u> GGCC	
allele)	ATCGCAG <u>C</u> GGCCC	
IFNL3_F	CGGAAGAGGTTGAAGGTGAC	ABI expression buffer
IFNL3_R	CTCCACCATTGGCTGCAC	RNA must be DNAseI-treated 182 bp on DNA, 89 bp on
IFNL3_probe (FAM)	GCCCCAAAAAGGA	cDNA template
IFNL1	assay Hs00601677_g1, Applied Biosystems	-
PPIA (endogenous control)	assay 4326316E, Applied Biosystems	
TaqMan genotyping assays with MGB probes		
		standard, Qiagen genotyping
ss469415590_IFNL4_F	GCCTGCTGCAGAAGCAGAGAT	buffer
ss469415590_IFNL4_R ss469415590_IFNL4_VIC (TT,	GCTCCAGCGAGCGGTAGTG	
non-risk allele) ss469415590_IFNL4_FAM (dG,	ATCGCAG <u>AA</u> GGCC	
risk allele)	ATCGCAG <u>C</u> GGCCC	
rs12979860_F	GCCTGTCGTGTACTGAACCA	
rs12979860_R	GCGCGGAGTGCAATTCAAC	
rs12979860_FAM (T, risk allele) rs12979860_VIC (C, non-risk	CTGGTTC <u>A</u> CGCCTTC	
allele)	TGGTTC <u>G</u> CGCCTTC	
rs8099917	pre-developed assay C_11710096_10, Appl	1.1.1.

Supplementary Table 1. PCR primers and assays

Transcript ID, NCBI accession number	Exons	mRNA	Protein	ss469415590 allele	Annotation
IFNL4, p179, JN806234	5	1636 bp	179 aa	ΔG	*Similarity to IFNL3, full-length protein
p131, JN806225	4	1492 bp	131 aa	ΔG	Similarity to IFNL3, full-length protein
p107, JN806226	3	1420 bp	107 aa	ΔG	Similarity to IFNL3, full-length protein
JN806232	3	1131 bp	93 aa	ΔG	No similarity, protein fragment
p170, JN806233	3	915 bp	170 aa	ΔG	No similarity, full- length protein
JN806227	3	1637 bp	123 aa	TT	No similarity, protein fragment
JN806228	2	1493 bp	75 aa	TT	No similarity, protein fragment
JN806229	1	1421 bp	51 aa	TT	No similarity, protein fragment
p124, JN806230	3	916 bp	124 aa	TT	No similarity, full- length protein
p143, JN806231	3	1132 bp	143 aa	TT	No similarity, full- length protein

Supplementary Table 2. Description of novel transcripts and proteins identified upstream of *IFNL3* gene

*Protein similarity is defined based on global protein BLAST search based on NCBI databases. IFNL4 (p179) has highest homology with IFNL3 – 29.1% amino acid identity and 40.8% amino acid similarity. Protein fragments are open reading frames subjected to nonsense-mediated decay due to the presence of premature stop codons.

Supplementary Table 3. Allele frequencies of ss469415590, rs12979860 and rs8099917 in HapMap populations

rs8099917 genotypes were downloaded from HapMap (<u>www.hapmap.org</u>), while ss469415590 and rs12979860 were genotyped in all HapMap samples. Pair-wise linkage disequilibrium estimates (r^2) are between ss469415590 and other markers.

		HapMap populations											
Variant, allele	West-Africa 30 tri	· /	Europeans 30 tri		Asians (Chinese/CHB and Japanese/JPT) 90 individuals								
	Frequency %	r^2	Frequency %	r ²	Frequency %	r^2							
ss469415590, TT	23.3	-	67.6	-	93.3	-							
rs12979860, C	30.0	0.71	67.3	0.92	93.3	1.00							
rs8099917, T	97.5	0.008	81.7	0.44	93.9	0.91							

Supplementary Table 4. Analysis of linkage disequilibrium in 1000 Genomes Project.

SNPs from a 100-Kb genomic region in high linkage disequilibrium with ss469415590 ($r^2>0.6$ in YRI or $r^2>0.75$ in other populations) in the 1000 Genomes Project reference panel (<u>http://www.1000genomes.org</u>), October 2010 release. In the 1000 Genomes reference panel ss469415590 (T<u>T</u>/ Δ <u>G</u>) is represented by rs74597329 (<u>T</u>/<u>G</u>). The GWAS marker rs12979860 is shown in bold.

Population	Marker	Distance (bp)	r ²	Allele 1	Allele 1 frequency, %	N, chromosomes
	rs74597329 (ss469415590)	0	1	T (TT)	74.2	120
	rs4803222	198	0.914	G	74.2	120
	rs8113007	3948	0.874	А	73.3	120
CEU	rs688187	6403	0.846	G	70.8	120
	rs4803217	4935	0.837	С	72.5	120
	rs12979860	368	0.832	С	74.2	120
	rs581930	6032	0.802	С	71.7	120
	rs74597329 (ss469415590)	0	1	T (TT)	28.0	120
YRI	rs12979860	368	0.658	С	30.5	118
	rs73930703	1642	0.642	С	33.1	118
	rs74597329 (ss469415590)	0	1	T (TT)	94.2	120
	rs12979860	368	1	С	94.2	120
CHB/JPY	rs12980275	7372	0.85	А	95.0	120
	rs4803221	26	0.764	С	92.5	120
	rs4803222	198	0.764	G	92.5	120

		Viral	hep-C			HA	LT-C	
Characteristic	A	African- American N = 169		Curopean- American N = 182		African- American N = 144		European- American N = 741
Age (Median, IQR)	49.1	45.6 - 52.8	48.1	42.9 - 52.4	51	46.5 - 56.0	49	45.0 - 53.0
Male (N, %)	110	110 65.1		65.9	82	56.9	559	75.4
Ishak Fibrosis Score								
Missing (N, %)	1	0.6					1	0.1
0 (N, %)	18	10.7	19	10.4				
1 (N, %)	44	26	42	23.1				
2 (N, %)	49	29	49	26.9	14 82	9.7	54	7.3
3-4 (N, %)	49	29	55	30.2		56.9	413	55.7
5-6 (N, %)	8	4.7	17	9.3	48	33.3	273	36.8
HCV Genotype 1 (N, %)	169	100	182	100	138	95.8	656	88.5
HCV RNA level (log 10 IU) (median, IQR)	6.4	5.6 - 6.7	6.5	5.7 - 6.8	6.4	6.1 - 6.8	6.5	6.1 - 6.8
Prior Treatment (N, %)								
None	169	100	182	100				
pegIFN-a					32	22.2	211	28.5
pegIFN-α/RBV					112	77.8	530	71.5

Supplementary Table 5. Characteristics of the Virahep-C and HALT-C participants

IQR - interquartile range

		Urban Hea	lth Study		ALI	VE		
Characteristic	African-	American	European-A	American	African-American			
-	Chronic	Cleared	Chronic	Cleared	Chronic	Cleared		
Ν	350	109	395	162	586	78		
A as modian (IOD)	46.0	46.0	42.0	39.5	40	40		
Age, median (IQR)	(42 - 50)	(42 - 49)	(36 - 48)	(33 – 47)	(36 - 45)	(37 – 43)		
Years injection drug	27.0	25.0	23.0	20.0	14	13		
use, median (IQR)	(21 - 32)	(19-31)	(16 - 29)	(11 – 29)	(7 - 19)	(8 – 19)		
Male (%)	62.6	60.6	72.4	67.3	76	65		
HIV-1-infected (%)	13.1	10.1	12.2	4.9	54	33		
Chronic HBV (%)	2.9	9.2	3.3	4.3	3	7		

Supplementary Table 6. Characteristics of the UHS and ALIVE participants

IQR - interquartile range

Supplementary Table 7. Comparison of rs12979860 and ss469415590 genotypes for predicting decrease in HCV RNA load. The median decrease in HCV RNA load (log_{10} IU/ml) is evaluated after 28 days of treatment with pegIFN- α /RBV in European-American (EA) and African-American (AA) participants in Virahep-C. Analysis is limited to subjects successfully genotyped for both ss469415590 and rs12979860.

Variant	Genotype	N	%	HCV RNA Decrease (Median, log ₁₀ IU/ml)	HCV RNA Difference*	P value**			
African-American									
rs12979860	СТ	91	56.2	1.31	0.26	0.031			
	CC	18	11.1	2.70	1.65	1.4×10^{-4}			
	$\Delta G / \Delta G$	67	41.4	0.87	0.0				
ss469415590	$\Delta G/TT$	80	49.4	1.54	0.67	8.4×10^{-5}			
_	TT/TT	15	9.3	2.84	1.97	6.6×10^{-7}			
		Eu	iropean-A	merican					
	TT	19	10.8	1.14	0.0				
rs12979860	СТ	78	44.3	1.57	0.43	0.027			
	CC	79	44.9	2.99	1.85	3.4×10^{-7}			
	$\Delta G/\Delta G$	19	10.8	1.14	0.0				
ss469415590	$\Delta G/TT$	78	44.3	1.57	0.43	0.027			
	TT/TT	79	44.9	2.99	1.85	3.4×10^{-7}			

* Difference in median HCV RNA level (log 10 IU/ml) compared to referent genotype ** Kruskal-Wallis test

Supplementary Table 8. Comparison of rs12979860 and ss469415590 genotypes for predicting response to pegIFN-α/RBV treatment in European-Americans from Virahep-C study. Response is evaluated as 24-week, end-of-treatment and sustained virological response (SVR) to pegIFN-α/RBV treatment in European-American (n=182) participants in Virahep-C. Analysis is limited to subjects successfully genotyped for both ss469415590 and rs12979860.

Variant	Genotype	Ν	24-w	veek Res	sponse	End-of-	Treatmer	nt Response		SVR	
	0	- ·	%	OR	p-value	%	OR	p-value	%	OR	P value
	TT	21	52.4	Ref.		33.3	Ref.		28.6	Ref.	
rs12979860	СТ	78	74.4	2.64	0.056	67.9	4.24	5.7×10^{-3}	44.9	2.03	0.18
	CC	83	80.7	3.81	9.9x10 ⁻³	72.3	5.22	1.6x10 ⁻³	63.9	4.42	5.4×10^{-3}
	$\Delta G / \Delta G$	21	52.4	Ref.		33.3	Ref.		28.6	Ref.	
ss469415590	$\Delta G/TT$	78	74.4	2.64	0.056	67.9	4.24	5.7×10^{-3}	44.9	2.03	0.18
	TT/TT	83	80.7	3.81	9.9x10 ⁻³	72.3	5.22	1.6x10 ⁻³	63.9	4.42	5.4×10^{-3}

OR - odds ratio

Supplementary Table 9. Comparison of rs12979860 and ss469415590 genotypes for predicting response to pegIFN-α/RBV treatment in European-Americans from HALT-C study. Response is evaluated as 20-week, end-of-treatment and sustained virological response (SVR) to pegIFN-α/RBV treatment in European-American (n=741) participants enrolled in the HALT-C Trial. Analysis is limited to subjects successfully genotyped for both ss469415590 and rs12979860.

Variant	Genotype	Ν	20-	week Res	sponse	End-o	f-Treatm	ent Response	SVR			
	Jeres Jeres		%	OR	p-value	%	OR	p-value	%	OR	P value	
	TT	129	15.5	Ref.		11.6	Ref.		7.0	Ref.		
rs12979860	СТ	425	29.6	2.30	1.7×10^{-3}	26.6	2.75	6.2×10^{-4}	14.6	2.28	0.027	
	CC	187	66.8	10.99	$1.0 \text{ x} 10^{-16}$	58.3	10.61	3.8×10^{-14}	33.7	6.77	$4.4 \text{ x} 10^{-7}$	
	$\Delta G / \Delta G$	133	15.8	Ref.		12.0	Ref.		6.8	Ref.		
ss469415590	$\Delta G/TT$	420	29.8	2.26	1.8×10^{-3}	26.7	2.66	7.0×10^{-4}	14.8	2.39	0.019	
	TT/TT	188	66.5	10.58	8.9 x10 ⁻¹⁷	58.0	10.09	$3.4 \text{ x} 10^{-14}$	33.5	6.94	3.0×10^{-7}	

OR - odds ratio

Supplementary Table 10. Association of rs12979860 and ss469415590 with spontaneous clearance of HCV infection among European-American injection drug users in the Urban Health Study (UHS). Analysis is limited to subjects successfully genotyped for both ss469415590 and rs12979860 (n=557).

Variant	Genotype	Chronic N	%	Clear N	%	OR	P value	AUC P value
	TT	41	10.4	6	3.7	Ref.		0.64
rs12979860	CT	182	46.1	41	25.3	1.54	0.36	
	CC	172	43.5	115	71.0	4.57	8.1×10^{-4}	
	Total	395		162				
	$\Delta G / \Delta G$	44	11.1	7	4.3	Ref.		0.64
ss469415590	$\Delta G/TT$	175	44.3	39	24.1	1.40	0.45	
	TT/TT	176	44.6	116	71.6	4.14	8.1×10^{-4}	
	Total	395		162				

OR - odds ratio; AUC - area under the receiver operating characteristic curve

variants	SNP ID	alleles	annotation	Allele 1	Allele 1	frequencies in H	HapMap samples
variants	SNF ID	aneles	annotation	Allele I	CEU	YRI	CHB/JPT
IFNL4, upstream	rs7248668	A/G	4,602 bp upstream of translation start	А	0.183	0.025	0.056
IFNL4, upstream	rs8099917	T/G	3,946 bp upstream of translation start	G	0.183	0.025	0.061
IFNL4, upstream	rs8109886	A/C	3,543 bp upstream of translation start	А	0.422	0.864	0.073
IFNL4, upstream	rs10853727	T/C	1,244 bp upstream of translation start	С	0.108	0.108	0.006
IFNL4, 5'UTR	rs4803222	G/C	5'UTR, 134 bp upstream of translation start	С	0.305	0.305	0.067
IFNL4, ex1	rs150891559	T/C	Ala11Ala	Т	0.017	0	0
IFNL4, ex1	rs73555604	T/C	Cys17Tyr	Т	0.025	0.275	0
IFNL4, ex1	ss469415590	$\Delta G/TT$	Ala22/no IFNL4	ΔG	0.317	0.767	0.067
IFNL4, ex1	rs4803221	G/C	Ser30Ser	G	0.186	0.192	0.056
IFNL4, intron1	rs12979860	C/T	intron	Т	0.317	0.700	0.067
IFNL4, intron1	rs181637919	C/T	intron	Т	0.008	0.017	0
IFNL4, ex2	rs142981501	C/G	Pro60Arg	С	0	0.042	0
IFNL4, ex2	rs117648444	T/C	Pro70Ser	Т	0.117	0.108	0.001
IFNL4, intron 3	rs111531283	T/G	intron	G	0.300	0.300	0
IFNL4, intron 3	rs143958949	C/A	intron	А	0	0.005	0
IFNL4, intron 4	rs77811741	G/T	intron	Т	0	0.025	0
IFNL4, ex5	rs12971396	C/G	Ser149Ser	С	0.195	0.192	0.062
IFNL4, ex5	rs137902769	T/A	Ser175Ser	А	0.025	0.150	0
IFNL4, 3'UTR	ss539198934	T/C	3'UTR	С	0.033	0.117	0
IFNL3, 5'UTR	rs28416813	G/C	5'UTR	G	0.325	0.683	0.063
IFNL3, ex2	rs8103142	C/T	Lys70Arg	С	0.325	0.711	0

Supplementary Table 11. Analysis of genetic variants based on Sanger sequencing and TaqMan genotyping of HapMap samples

Supplementary Table 12. Analysis of pair-wise linkage disequilibrium (r^2) within *IFNL3/IFNL4* region in HapMap samples. The samples are from Europeans (CEU), West-Africans (YRI) and Asians - Chinese (CHB) and Japanese (JPT). Monomorphic markers are highlighted in light-gray, only marker with MAF>2.5% at least in one population are presented.

HapMap, CEU N=90 Markers	rs8099917	rs8109886	rs10853727	rs4803222	rs73555604	ss469415590	rs4803221	rs12979860	rs142981501	rs117648444	rs111531283	rs12971396	rs137902769	ss539198934	rs28416813	rs8103142
rs8099917																
rs8109886	0.320															
rs10853727	0.027	0.158														
rs4803222	0.522	0.609	0.282													
rs73555604	0.004	0.036	0.002	0.008												
ss469415590	0.420	0.640	0.262	0.885	0.055											
rs4803221	0.891	0.329	0.028	0.522	0.004	0.435										
rs12979860	0.420	0.640	0.262	0.885	0.055	0.923	0.435									
rs142981501																
rs117648444	0.011	0.173	0.767	0.246	0.002	0.227	0.005	0.227				_				
rs111531283	0.456	0.531	0.283	0.922	0.011	0.780	0.454	0.780		0.247						
rs12971396	0.946	0.394	0.03	0.551	0.005	0.463	0.946	0.463		0.009	0.483					
rs137902769	0.0	0.0	0.0	0.0	0.10	0.0	0.0	0.0		0.0	0.011	0.0			_	
ss539198934	0.154	0.049	0.004	0.08	0.0	0.074	0.153	0.074		0.006	0.08	0.145	0.001			
rs28416813	0.466	0.666	0.252	0.924	0.053	0.962	0.482	0.962		0.218	0.51	0.510	0.0	0.072		
rs8103142	0.466	0.666	0.197	0.850	0.053	0.889	0.482	0.889		0.168	0.51	0.510	0.0	0.072	0.925	

HapMap, YRI N=90 Markers	rs8099917	rs8109886	rs10853727	rs4803222	rs73555604	ss469415590	rs4803221	rs12979860	rs142981501	rs117648444	rs111531283	rs12971396	rs137902769	ss539198934	rs28416813	rs8103142
rs8099917																
rs8109886	0.004															
rs10853727	0.003	0.019														
rs4803222	0.059	0.069	0.282													
rs73555604	0.010	0.058	0.046	0.170												
ss469415590	0.008	0.504	0.037	0.130	0.115											
rs4803221	0.108	0.036	0.029	0.551	0.090	0.072										
rs12979860	0.011	0.357	0.052	0.178	0.163	0.710	0.102									
rs142981501	0.001	0.007	0.005	0.101	0.016	0.013	0.100	0.019								
rs117648444	0.003	0.018	1.0	0.282	0.042	0.034	0.026	0.052	0.005							
rs111531283	0.060	0.066	0.283	1.00	0.163	0.130	0.553	0.184	0.101	0.283						
rs12971396	0.108	0.036	0.029	0.551	0.090	0.072	1.000	0.102	0.100	0.026	0.553					
rs137902769	0.004	0.023	0.021	0.069	0.406	0.054	0.042	0.076	0.007	0.021	0.076	0.042				
ss539198934	0.003	0.019	0.016	0.059	0.348	0.04	0.031	0.057	0.006	0.016	0.057	0.031	0.748			
rs28416813	0.011	0.276	0.030	0.142	0.172	0.628	0.101	0.880	0.019	0.03	0.150	0.101	0.079	0.059		
rs8103142	0.011	0.301	0.023	0.133	0.158	0.610	0.093	0.800	0.018	0.023	0.133	0.093	0.073	0.055	0.920	

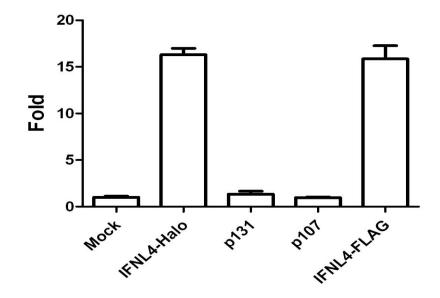
HapMap, CHB/JPT N=90 Markers	rs8099917	rs8109886	rs10853727	rs4803222	rs73555604	ss469415590	rs4803221	rs12979860	rs142981501	rs117648444	rs111531283	rs12971396	rs137902769	ss539198934	rs28416813	rs8103142
rs8099917																
rs8109886	0.004															
rs10853727																
rs4803222	0.059	0.069														
rs73555604																
ss469415590	0.008	0.504		0.130												
rs4803221	0.108	0.036		0.551		0.072										
rs12979860	0.011	0.357		0.178		0.710	0.102									
rs142981501																
rs117648444																
rs111531283	0.060	0.066		1.00		0.130	0.553	0.184								
rs12971396	0.108	0.036		0.551		0.072	1.000	0.102			0.553					
rs137902769				0.069		0.054	0.042	0.076			0.076					
ss539198934				0.059		0.04	0.031	0.057			0.057					
rs28416813	0.011	0.276		0.142		0.628	0.101	0.880			0.150	0.101				
rs8103142	0.011	0.301		0.133		0.610	0.093	0.800			0.133	0.093			0.920	

Supplementary Table 13. Haplotype analysis in the *IFNL3/IFNL4* region in HapMap samples and participants of Virahep-C study. Sustained virological response (SVR) was used as outcome of pegIFN- α /RBV therapy treatment (responders/non-responders). Bold underlined are markers included in the haplotype analysis of SVR by Smith et. al, 2011., * - 8 markers used in the final haplotype analysis in HapMap and Virahep-C samples. In yellow – the unfavorable haplotypes based on studies in Europeans and Asians, and their extrapolation in Africans; in grey – a common favorable haplotype shared by all populations. Highlighted bold underlined are non-synonymous variants within *IFNL4* found on the background of unfavorable haplotypes. Genotypes of *IFNL4* markers were determined by Sanger sequencing; no other coding variants were identified in these samples. EA- European-Americans; AA- African-Americans. Haplotype frequencies in all groups (HapMap and responders/non-responders) are indicated as %.

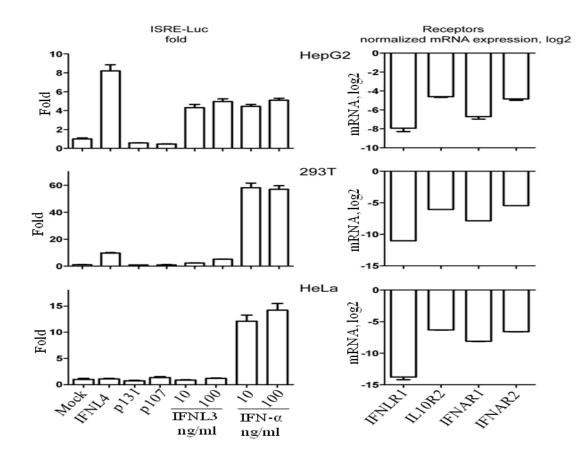
	IFNL3							IFNL	4				u	pstre: IFN		f					Virahep-C			
location	intron 2	Lys70Arg	5'UTR	Ser175Ser, ex5	Ser149Ser, ex5	Pro70Ser, ex2	Arg60Pro, ex2	intron 1	Ser30Ser, ex1	Indel, ex1	Cys17Tyr, ex1	5'UTR	intergenic	intergenic	intergenic	intergenic	% in HapMap	Based		th et al, Ge 2011, Table n=819	EA: n=93 resp; n=85 non-resp; AA: n=43 resp; n=112 non-resp			
variant	rs11881222	rs8103142	rs28416813	rs137902769	rs12971396*	rs11764844*	rs142981501*	<u>rs12979860*</u>	rs4803221 *	ss469415590*	rs73555604*	rs4803222	rs10853727	rs8109886	rs8099917*	<u>rs7248668</u>	ij	resp, %	non-resp, %	p-value	OR, 95%CI	resp, %	non-resp, %	p-value
	G	С	G	Т	<u>C</u>	С	G	Т	<u>G</u>	ΔG	С	С	Т	А	G	Α	15.3	16.5	30.4	9.51E-11	2.20(1.72-2.80)	14.5	24.1	ref
CEU	G	С	G	Т	G	<u>T</u>	G	Т	С	ΔG	С	С	<u>C</u>	А	Т	G	9.3	10.1	10.6	0.77	1.04(0.75-1.43)	5.9	13.5	0.43
n=90	A/G	С	G	Т	G	С	G	Т	С	ΔG	<u>T</u>	G	Т	А	Т	G	1.7	1.1	1.6	0.39	1.49 (0.62-3.56)	4.3	2.9	0.20
	A A	T T	C C	T T	G G	C C	G G	C C	C C	TT TT	C C	G G	T T	C A	T T	G G	57.3 9.7	48.4 12.3	39.6 7.8	4.00E-04 2.40E-03	0.70(0.57-0.85) 0.60(0.43-0.83)	74.7	58.2	0.011
	А	С	G	T/A	G	С	G	Т	С	ΔG	<u>T</u>	G	Т	А	Т	G	24.8				· · · · · · · · · · · · · · · · · · ·	14.0	22.3	
	G	С	G	Т	<u>C</u>	С	G	Т	<u>G</u>	ΔG	С	С	Т	А	Т	G	15.2					5.8	8.0	
	G	С	G	Т	G	<u>T</u>	G	Т	С	ΔG	С	С	<u>C</u>	А	Т	G	10.0					9.3	4.9	
	A/G	С	G	Т	G	С	G	Т	С	ΔG	С	G	Т	А	Т	G	11.6					9.3	12.9	
YRI	А	<u>T</u>	С	Т	G	С	G	<u>C</u>	С	ΔG	С	G	Т	А	Т	G	6.7					1.1	7.6	
n=90	G	С	G	Т	<u>C</u>	С	<u>C</u>	Т	<u>G</u>	ΔG	С	С	Т	А	Т	G	3.1					5.8	5.4	
	G	С	G	Т	<u>C</u>	С	G	Т	<u>G</u>	ΔG	С	С	Т	А	G	Α	2.5					9.3	6.7	
	Α	С	G	Т	G	С	<u>C</u>	Т	С	ΔG	<u>T</u>	G	Т	А	Т	G	1.0					-	-	
	А	Т	С	Т	G	С	G	С	С	TT	С	G	Т	С	Т	G	12.5							
	A	Т	С	Т	G	C	G	С	C	TT	С	G	Т	A	Т	G	8.3					44.2	31.3	
CUID	A	С	С	Т	G	C	G	С	С	TT	C	G	Т	Α	T	G	1.7							
CHB, JPT,	G	С	G	Т	C	С	G	Т	G	ΔG	С	С	Т	А	G	A	5.5							
n=90	А	Т	С	Т	G	С	G	С	С	TT	С	G	Т	С	Т	G	92.8							

Supplementary Fig. 1. DNA and protein sequence analysis of the regions upstream of the *IFNL2* and *IFNL3* genes. Identical nucleotides and amino acids are shaded in black. The location of ss469415590 is marked by a red bar.

a. Alignment of DNA sequences shows multiple mismatches between regions upstream of *IFNL2* and *IFNL3* genes. Protein translation is based on sequences upstream of *IFNL3* gene; M (Met) marks first amino acid of predicted proteins.

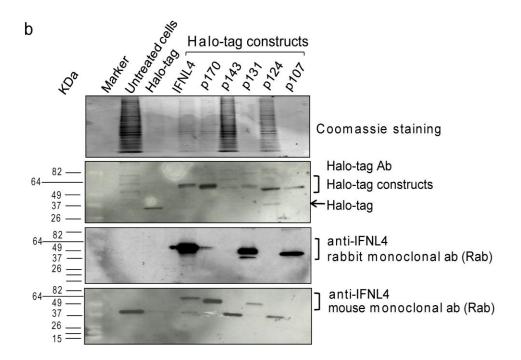

b. The region upstream of *IFNL2* is predicted to generate a protein fragment of 49 aa invariably terminated by a stop codon and expected to be degraded by nonsense-mediated decay. The region upstream of *IFNL3* gene is predicted to produce several full-length protein isoforms depending on alleles of ss469415590, ΔG and TT (ΔC and AA based on complementary DNA strand). The open reading frames and the identity of these proteins depend on ss469415590, a frame-shift variant at amino acid 22.

а	IFNL2 IFNL3-∆C IFNL3-AA protein	ATO	GCGC	SCCG	AGT	GTGT GTCT GTCT V	GGG	CCG	CAG	IGGC	CGC	GGG	GCT	GTG	GGT(CCTO				1
	IFNL2 IFNL3-∆C IFNL3-AA protein	GCI	AG-O	GGC	ccc	ccac cccc cccc R	GCGC	TGC	CTG	СТСТ	CCC	ACT	ACC ACC	nr	nn					
b	IFNL2 IFNL3-ΔC IFNL3-AA protein				AAG	TMAI TMAI	CTV	IAA	APR GPP	RCLI	SHY ALAL	RSL	EPR GAP	TLA	AAK/	ALRI GAE(RYI	EEnr RGni		


Supplementary Fig. 2. Sequence of IFNL4 gene and genetic cariants found to be polymorphic at least in one population by sequencing of 270 HapMap samples (CEU, YRI and CHB/JPT).

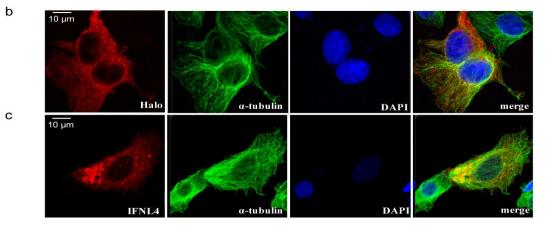
Transcription start site Gttgcccaggtggagacggctctggacgcctcccaggggacagtggacggcagcacctgctgcagcacgaggcacagagg rs4803222 tgctgtgccttcacgctccgagcattgccttccctgggatcctaacccaaggcgggggggtggacgcgctggaccctctc tttggcttccctgacgtctctcgcctgctgcagaagcagag Exon 1 rs150891559,Ala11Ala rs73555604,Cys17Tyr ss469415590 ATGCGGCCGAGTGTCTGGGCCGCAGTGGCCGC[G/A]GGGCTGTGGGTCCTGT[G/A]CACGGTGATCGCAG[AA/-C]GGCCC rs4803221, Ser30Ser CCCGGCGCTGCCTGCTC[G/C]CACTACCGCTCGCTGGAGCCCCGGACGCTGGCGGCTGCCAAGGCGCTGAGGGACCGCTAC Intron 1 rs117436747 gtaagtcaccgcccagcccctgtgccccctgggaccctggccccacc[G/A]ggttcccatacacccgttcctgtcccaaggg gtcctgcgtcctagcgcccagcaggcgcctctcctatgtcagcgcccacaattcccaccacgagacccccgcaqtccccqtcq rs12979860 gctgggggagcgcggagtgcaattcaaccctggttc[G/A] cgccttcggggagctccctggttcagtacacgacaggcacga rs181637919 c[C/T]gtgcgctgccagtacccatccacgtccaggaatcccagactgtgcagaggttagggggccctggcgagggggcctagc cgtatgcgataagcgccgcttgtcccgcag rs142981501,Arg60Pro rs117648444, Pro70Ser Exon 2 (alternative) GAGGAAGAGGCGCTGAGCTGGGGGGCAGC [G/C] CAACTGCTCCTTCCGCCCCAGGAGGGAT [C/T] CTCCGCGGCCATCC Intron 2 gtgaggcccgggagtgggcgggagaggcatggcccggcgcggcccgctctaacgccctctcgtccccgcagExon 3(alternative) TCCTGCGCTCGGCTCCGCCACGTGGCCCGGGGCATCGCGGACGCCCAGGCAGTGCTCAGCGGCCTGCACCGCTCGGAGCTGCT Intron 3 rs111531283 gtgagtgacggccgcgcccccgccgcccctc[T/G]cccccgccagcttctctgcatcctcaggcccacggcgagccccagcgc rs143958949 tttgccaatctgtcctgcttagcggaaaaacccatccagac[C/A]ggagtcgggtcctctgggtgtcctgaaatccgggctc gagtctgcggctgggggggccacggggcagatgcagagggggcttcgtccttcgccttttccatttgcctcatgtcccacctc cag Exon 4 CTTGAGCTGGCACGGCCAGGCTCCTCCAGGAAGGTCCCCCGGGGCCCAGAAGAGGCGTCACAAACCCCCGGAGAGCG rs77811741 Intron 4 gtqaqtqcaacaqqcaatacaqq[G/T]ttaqcccqcaqqqaqqaccaqqcqaqqctqacaaqqacqqqactqaqqctqcqaq Exon 5 rs12971396,Ser149Ser rs137902769,Ser175Ser ss539198934 GCACACTC[T/A]GGGCCTTGCCTCTGAccccgcccctc[T/C]ggcagcacggaaacctccacgccattggctgccgaaag

Supplementary Fig. 3. Activation of the Interferon Stimulated Response Element (ISRE) -Luc reporter in HepG2 cells transiently co-transfected with IFNL4 expression constructs carrying either the Halo-tag or a FLAG-tag. Alternatively, cells were transfected with expression constructs for non-functional forms p131 and p107, or an empty vector (mock). Similar activation of ISRE-Luc reporter is induced by IFNL4 with both protein tags, while mock, p131 and p107 did not induce activation. The results represent mean values of 8 biological replicates, with standard errors.

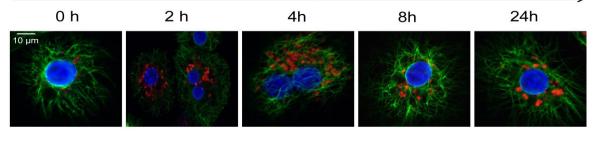

Supplementary Fig. 4. Activation of the interferon-stimulated response element (ISRE)-Luc reporter and mRNA expression of receptors for type–I IFNs (*IFNAR1* and *IFNAR2*) and type–III IFNs, *IFNLR1* (*IL28R1*) and *IL10R2*, in human cell lines HepG2, 293T and HeLa. Activation of ISRE-Luc reporter was analyzed after transient co-transfection with IFNL4, p131 or p107 expression constructs or after treatment with 10 and 100 ng/ml of IFN- α and IFNL3. Results represent mean values of 8 biological replicates, with standard errors. mRNA expression of interferon receptors was evaluated by qRT-PCR assays in non-treated cells and normalized to expression of four endogenous controls; less negative values represent higher mRNA expression. Expression of *IFNAR1*, *IFNAR2* and *IL10R2* was found at comparable levels in all cell lines tested. However, these cell lines differ by the level of expression of *IFNLR1*– the highest expression was detected in HepG2 cells, compared to which ~10 fold lower expression was detected in 293T cells and ~50 fold lower expression was detected in HeLa cell line.

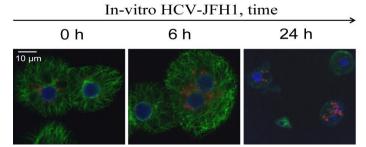
Supplementary Fig. 5. Outline of expression constructs for the 6 protein isoforms. Epitopes recognized by the anti-IFNL4 mouse and rabbit monoclonal antibodies and the Halo-tag ab are indicated. The mouse monoclonal antibody recognizes IFNL4 (p179) and two non-functional proteins, p170 and p131; while the rabbit monoclonal antibody recognizes IFNL4 (p179) and two non-functional proteins, p131 and p107. All Halo-tag protein isoforms are recognized with the Halo-tag antibody in cell lysates of transiently transfected hepatoma HepG2 cells.

а			IFNL	4 -ab
Halo-tag Ab	protein	Halo- tag Ab	MAb	RAb
MAb, aa 44-74 RAb, aa128-152 Halo-tag	IFNL4 p179 aa	Yes	Yes	Yes
	p170 aa	Yes	Yes	No
	p143 aa	Yes	No	No
	p131aa	Yes	Yes	Yes
	p124aa	Yes	No	No
	p107aa	Yes	No	Yes


transcripts with ΔG allele of ss469415590 (frame-shift), encode 4 protein isoforms, p179 (IFNL4) and 3 non-functional forms
transcripts with TT allele of ss469415590, encode 2 protein isoforms unrelated to IFNL4

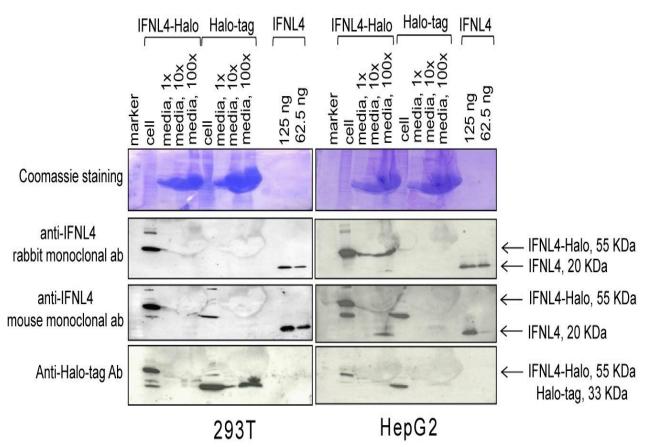
Supplementary Fig. 6. Analysis of IFNL4 expression in HepG2 cells and primary human hepatocytes.


- **a.** Western blot analysis of recombinant purified proteins (IFN-α, IFNL3 and IFNL4) and lysates of HepG2 cells transfected with IFNL4-Halo expression construct. Expression is detected with the mouse monoclonal anti-IFNL4 antibody. IFNL3 and IFNL4 are recombinant purified proteins generated in the sfs9 baculoviral system.
- **b.** Confocal imaging with an anti-Halo-tag antibody in HepG2 cells transiently transfected with IFNL4-Halo construct.
- **c.** Confocal imaging with a mouse monoclonal anti-IFNL4 antibody in HepG2 cells transiently transfected with IFNL4-Halo construct.
- **d.** Confocal imaging in primary human hepatocytes from a liver donor not infected with HCV, who was heterozygous for ss469415590 Δ G/TT genotype. The cells were treated with 50 ug/ml of PolyI:C (the same image as in Fig. 5, Δ G/TT sample) or *in-vitro* infected with JFH1-HCV. The detection is performed with a mouse monoclonal anti-IFNL4 antibody. Red IFNL4; green α -tubulin (cytoplasm), blue nuclei. Weak IFNL4 expression was detected even in samples not infected with JFH1-HCV (0 h). There was massive cell death in cells infected with JFH1-HCV at 24 h, but the consistency of this observation should be tested in additional samples.

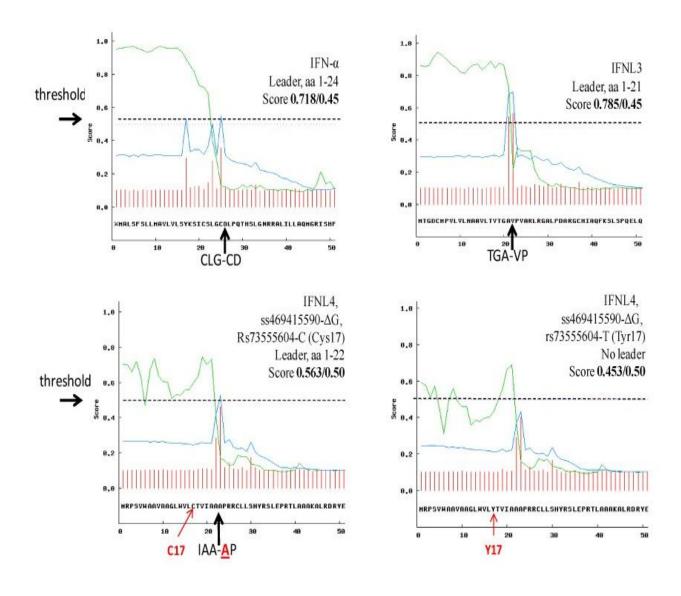


d

PolyI:C, 50 ug/ml, time

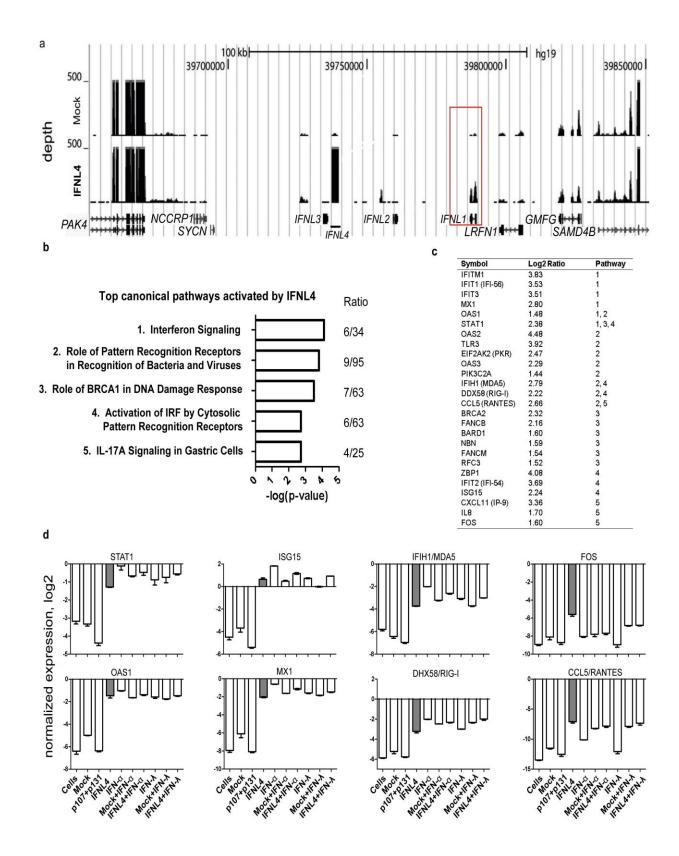


а


Supplementary Fig. 7. Analysis of IFNL4 expression in 293T and HepG2 cells transiently transfected with IFNL4-Halo construct or an empty Halo-tag vector.

a. The cells and the media were collected 72 hours post-transfection, using one well of 6-well plate per condition. Cells were lysed in 300 ul of RIPA buffer and ~10 ul of each lysate was used per gel lane; cell media was used un-concentrated or concentrated 10x or 100x. Weak secreted IFNL4 expression was detected with the rabbit monoclonal anti-IFNL4 antibody in HepG2 cells, but not in 293T cells. Very weak or no secreted IFNL4 expression was detected with the mouse monoclonal anti-IFNL4 or a Halo-tag antibodies.

b. Prediction of leader peptides with SignalP4.0 server for secreted proteins IFN- α and IFNL3 and two allelic forms of IFNL4 that carry ss469415590- Δ G alleles but differ by rs73555604 (Cys17Tyr alleles). The weak leader peptide of IFNL4-Halo construct (with rs73555604, Cys17 variant) indicates that, compared to IFN- α and IFNL3, IFNL4 has lower secretability.



a.

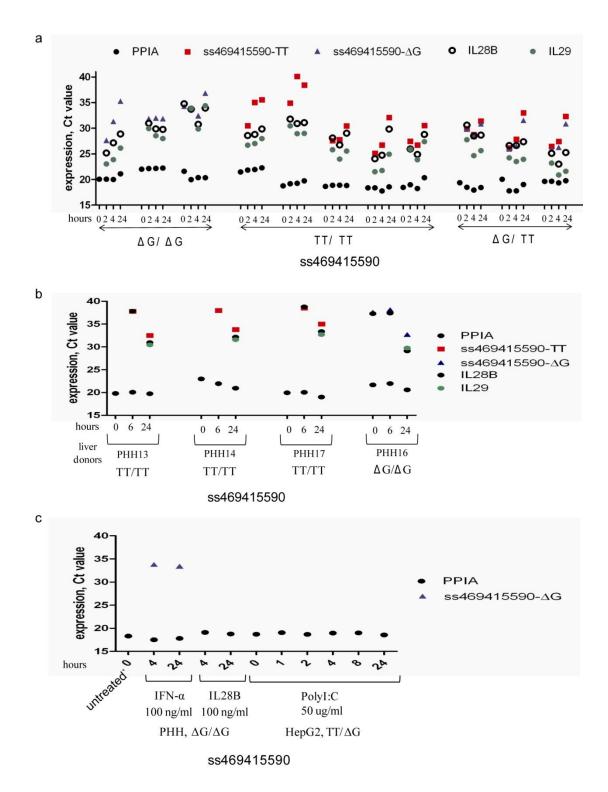
Supplementary Fig. 8. Functional effects of IFNL4 over-expression in HepG2 cells

- **a.** RNA-seq of HepG2 cells transfected with an empty vector (mock) or the IFNL4 expression construct. RNA-seq reads contributed by the IFNL4 expression construct are marked as 'IFNL4'. The results are presented as clusters of RNA-seq reads, with the number of reads (depth) corresponding to the level of mRNA expression. Within the 150-Kb region, only expression of *IFNL1* is induced by IFNL4 over-expression.
- **b.** Top canonical pathways statistically significantly affected by IFNL4 over-expression in HepG2 cells, according to Ingenuity Pathway Analysis (IPA). The ratio indicates the number of transcripts affected by IFNL4 over-expression compared to the total number of transcripts in the corresponding pathways.
- **c.** List of transcripts (from panel b) enriched in the corresponding pathways, Log2 ratio indicates the magnitude of expression change in IFNL4-transfected compared to mock-transfected samples.
- d. Quantitative reverse-transcriptase PCR (qRT-PCR) expression analysis of transcripts selected from the list (presented on panel c) and tested in HepG2 cells in specified conditions: untreated cells, mock-transfected cells or cells transfected with IFNL4, p131 and p107 expression constructs and/or treated with 10 ng/ml or purified recombinant IFN-α and IFNL3 proteins. Expression is presented on log 2 scale as ΔCt values, which correspond to Ct values (PCR cycle at detection) of target genes normalized by an average of Ct values of 4 endogenous controls. Less negative ΔCt values correspond to higher mRNA expression of target genes. The fold difference between any two samples can be roughly calculated as fold=2^(ΔCt sample1-ΔCt sample 2). Equal amounts of DNase-treated RNA were used for all the assays. Results are presented as mean values of 3 or 4 biological replicates, with standard errors. Expression analysis was done with The Human Antiviral Response RT² ProfilerTM PCR Array (Qiagen).

Supplementary Fig. 9. Prediction of IFNL4 protein based on genomic sequences of 45 species available in UCSC genome browser (genome.uscs.edu). IFNL4 protein is predicted only in the genomes of macaque (marmoset and rhesus), orangutan, chimpanzee and human. Identical amino acids are shaded in black and the positions of human non-synonymous genetic variants are indicated.

Supplementary Fig. 10. Outline of mRNA transcripts within *IFNL4* region and their detection by RNA-sequencing and an allele-specific expression assay.

- a. Outline of all mRNA transcripts generating full-length protein isoforms. An allelespecific expression assay for ss469415590 TT/ Δ G is located within the first exon of *IFNL4* and detects all transcripts with TT and Δ G alleles. Thus, this assay does not discriminate between the four transcripts with Δ G allele generating the functional IFNL4 (p179) protein and non-functional forms p170, p131 and p107. RNA-seq results show fragments per kilobase of exon per million fragments mapped (FPKM) values which roughly correspond to relative levels of expression of each of the transcripts detected by RNA-seq analysis of PolyI:C-stimulated primary human hepatocytes from a liver donor heterozygous for ss469415590 (Fig. 1). Of all the transcripts carrying the Δ G allele, the transcript for the non-functional p170 is the most abundant isoform at 2, 4, 8 and 24 hours of PolyI:C treatment. The functional IFNL4 (p179) transcript is the second common isoform at 4, 8 and 24 hours after PolyI:C treatment.
- b. Outline of DNA/cDNA sequence and the primers used for an allele-specific genotyping and expression assay for ss469415590 TT/∆G (corresponds to AA/-C in on a complementary strand). The full information about this assay is presented in Supplementary Table 1. The assay targets ss469415590 and avoids other variants in this amplicon. Since the assay is located within exonic sequence, it can be used both for genotyping and expression analysis, for which RNA has to be DNAse-treated to eliminate any possible signal from residual contaminating DNA.


а		RNA-seq, FPKM									
ss469415590 TT/∆G	transcript	2 h	4 h	8 h	24 h						
	IFNL4 p179aa	0	96.2	31.7	18.5						
	p170aa	133.4	233.2	71.6	50.0						
	p143 aa	1.3	0	0	1.5						
	p131aa	0	39.3	11.3	0						
	p124aa										
	p107aa	71.7	0	0	8.9						

transcripts with ΔG allele of ss469415590 (frame-shift), encode 4 protein isoforms, p179 (IFNL4) and 3 non-functional forms
transcripts with TT allele of ss469415590, encode 2 protein isoforms unrelated to IFNL4

b

forward primer <u>GCCTGCTGCAGAAGCAGAGAT</u>GCGGCCGAGTGTCTGGGCCGCAGTG rs150891559 rs73555604 <u>ss469415590</u> GCCGC[G/c]GGGCTGTGGGGTCCTGT[G/a]CACGGTGATCGCAG[<u>AA/-C]</u> rs4803221 reverse primer GGCCCCCGGCGCTGCCTGCTCTC[G/c]<u>CACTACCGCTCGCTGGAGC</u> Supplementary Fig. 11. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis of allele-specific expression of transcripts with ss469415590-TT and ΔG alleles and expression of *IFNL3 (IL28B)*, *IFNL1 (IL29)* and *PPIA* (endogenous control) in various samples. Expression is presented on log 2 scale as Ct values (PCR cycle at detection), with higher Ct values corresponding to lower mRNA expression. The fold difference between any two samples can be roughly calculated as fold=2^(Ct sample1-Ct sample 2). Equal amounts of DNase-treated RNA were used for all the assays. Graphs show activation of transcripts carrying both ss469415590 alleles (TT and ΔG). Transcripts carrying the risk ss469415590- ΔG allele generate the functional IFNL4/p179 protein, as well as non-functional proteins p170, p131, p107, while transcripts with the beneficial ss469415590-TT allele generate only non-functional proteins. All the samples were also genotyped for rs12979860 and ss469415590 alleles TT and ΔG correspond to rs12979860 alleles C and T. All primary human hepatocytes (PHH) are from liver donors not infected with HCV.

- a. Expression analysis in PHH treated with 50 ug/ml of PolyI:C for 0, 2, 4 and 24 hours. PHH are from liver donors with ss469415590 ΔG/ΔG (n=3), TT/TT (n=5) and TT/ΔG (n=3) genotypes.
- **b.** Expression analysis in PHH *in-vitro* infected with JFH1-HCV for 0, 6 and 24 hours. PHH are from liver donors with ss469415590 $\Delta G/\Delta G$ (n=1) and TT/TT (n=3) genotypes.
- c. Expression analysis in PHH or HepG2 cells. PHH are from a liver donor with ss469415590 Δ G/ Δ G genotype. PHH were untreated or treated with 100 ng/ml of IFN- α or IFN- λ . Only IFN- α treatment induced low *IFNL4* expression. HepG2 cells with ss469415590 TT/ Δ G genotype were treated with 50 ug/ml of PolyI:C for 0, 1, 2, 4, 8 and 24 hours, but no expression of transcripts with either TT or Δ G alleles of ss469415590 was induced.

Nature Genetics: doi:10.1038/ng.2521

Supplementary Note - Clinical Studies

VirahepC

The Study of Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) was designed to compare response to treatment with pegylated IFN-α/ribavirin in African American patients with chronic hepatitis C to otherwise similar patients of European ancestry¹. In Virahep-C, patients with HCV genotype 1 infection who had not undergone previous treatment for chronic hepatitis C received treatment with a standard regimen of pegylated IFNalfa-2a (180 µg/week) plus ribavirin (1000-1200 mg/day) for up to 48 weeks. Ancestral designation was self-reported. Study end points included: decrease in HCV RNA levels between baseline and various treatment time points; week 24 response (absence of detectable HCV RNA in serum after 24 weeks of therapy); end-of-treatment response (absence of HCV RNA after 48 weeks of therapy); and sustained virologic response (SVR; absence of HCV RNA 24 weeks after treatment was stopped). The protocol was approved by the institutional review boards of the participating institutions and all patients gave informed written consent. Reported results from Virahep-C showed that African-American patients had lower rates of virologic response than European-American patients and that those differences were not explained by differences in patient characteristics, baseline HCV RNA levels or the amount of medication taken during the study¹.

HALT-C

The Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial was a study of patients with advanced chronic hepatitis C who had failed previous interferon-based treatment^{2,3}. At enrollment, HALT-C patients had an Ishak fibrosis score >3 by local assessment of liver biopsy, had a Child-Turcotte-Pugh score <7 and had no evidence of hepatocellular carcinoma. Final assessment of fibrosis stage was performed by a panel of hepatopathologists. Patients with other liver diseases, human immunodeficiency virus infection, active illicit drug use or current alcohol abuse were excluded. Ancestral designation was self-reported. During the lead-in phase of HALT-C, patients underwent retreatment with pegylated-interferon-alfa-2a (180 μ g/week) plus ribavirin (1000-1200 mg/day). Subjects with undetectable HCV RNA at week 20 remained on combination treatment through week 48 and were followed until week 72. Subjects

with undetectable HCV RNA at weeks 48 and 72 were considered to have an SVR. Investigations of human genetics in the HALT-C Trial were conducted in those participants who provided (written) consent for genetic testing. The HALT-C Trial was approved by institutional review boards of the participating institutions.

Urban Health Study (UHS)

As previously described⁴, UHS recruited IDUs from street settings in six inner-city San Francisco Bay area neighborhoods from 1986 through 2002, drawing serial cross-sectional samples every six months⁵. Individuals 18 years of age or older were eligible for enrollment if they had injected drugs within the past 30 days or previously enrolled in the UHS study. New participants were screened for visible signs of recent or chronic injection (i.e., venipuncture sites or scars). Interviews were conducted using standardized questionnaires and blood samples were collected from participants who provided written informed consent. The present study included unduplicated IDUs recruited between 1998 and 2000⁶. Participants who were positive for HCV antibody were divided into two groups based on their HCV RNA result: 'chronic' (positive for HCV RNA) or 'cleared' (negative for HCV RNA and positive for antibody). All subjects with cleared infection were included in the study and frequency matched to those with chronic infection (maximum 4:1) on the basis of self-reported ethnicity and age.

Information on demographic variables and other potential covariates were assessed through face-to-face personal interviews^{6,7}. After being interviewed participants were counseled by trained staff on reducing infection risks and referred to appropriate medical and social services. Participants were not asked about treatment for HCV infection during 1998-2000, but when they were asked during 2001-2002, reports of antiviral treatment were rare⁸; thus it is very likely that the HCV seropositive, HCV RNA negative subjects in this study had recovered spontaneously. For the purpose of genetic investigations, ancestry was ascertained by self report; subjects who reported themselves to be White and not of Latino/Hispanic ethnicity are considered to be of 'European American' ancestry. Study procedures were approved by an Institutional Review Board of the National Cancer Institute and the Committee on Human Subjects Research at the University of California, San Francisco.

ALIVE

The AIDS Link to Intravenous experience (ALIVE) is an ongoing study of injection drug users enrolled in Baltimore, Maryland, from February 1988 through March 1989⁹ .HCV infection was established by detection of HCV antibody (anti-HCV) by enzyme immunoassay (EIA) and recombinant immunoblot assay (RIBA [version 3.0]; Novartis). Individuals with cleared HCV infection had anti-HCV (as confirmed by RIBA) and undetectable HCV RNA in serum or plasma without having received any HCV therapy. Individuals with persistent infection had anti-HCV and HCV RNA in serum or plasma before receiving any HCV therapy. Written informed consent for genetic testing was obtained from all participants. The study was approved by the institutional review board at Johns Hopkins University.

References for Supplementary Note:

- 1. Conjeevaram, H.S. et al. Peginterferon and ribavirin treatment in African American and Caucasian American patients with hepatitis C genotype 1. *Gastroenterology* **131**, 470-7 (2006).
- 2. Di Bisceglie, A.M. et al. Prolonged therapy of advanced chronic hepatitis C with lowdose peginterferon. *N Engl J Med* **359**, 2429-41 (2008).
- 3. Lee, W.M. et al. Evolution of the HALT-C Trial: pegylated interferon as maintenance therapy for chronic hepatitis C in previous interferon nonresponders. *Control Clin Trials* **25**, 472-92 (2004).
- 4. Shebl, F.M. et al. IL28B rs12979860 Genotype and Spontaneous Clearance of Hepatitis C Virus in a Multi-Ethnic Cohort of Injection Drug Users: Evidence for a Supra-Additive Association. *J Infect Dis* **204**, 1843-7.
- 5. Watters, J.K., Bluthenthal, R.N. & Kral, A.H. HIV seroprevalence in injection drug users. *JAMA* 273, 1178 (1995).
- 6. Tseng, F.C. et al. Seroprevalence of hepatitis C virus and hepatitis B virus among San Francisco injection drug users, 1998 to 2000. *Hepatology* **46**, 666-71 (2007).
- 7. Kral, A.H. et al. Sexual transmission of HIV-1 among injection drug users in San Francisco, USA: risk-factor analysis. *Lancet* **357**, 1397-401 (2001).
- 8. Seal, K.H. et al. Among injection drug users, interest is high, but access low to HCV antiviral therapy. Society of General Internal Medicine, 28th annual meeting, New Orleans, Louisiana, USA, May 11-14, 2005. *J Gen Intern Med* **20 Suppl 1**, 171 (2005).
- 9. Vlahov, D. et al. The ALIVE study, a longitudinal study of HIV-1 infection in intravenous drug users: description of methods and characteristics of participants. *NIDA Res Monogr* **109**, 75-100 (1991).