Global Distribution of HCV Genotypes

Homie Razavi, Erin Gower, Sarah Hindman, and Chris Estes

Center for Disease Analysis, Louisville, Colorado, USA

The 64th Annual Meeting of the American Association for the Study of Liver Diseases
Nov 1-5, 2013, Washington, DC

Background:
- In 2005, approximately 2.8% of the world’s population, or >165 million people, were anti-HCV positive (1).
- Starting in 2014, new therapies are expected to launch with higher cure rates and shorter duration of treatment than the current standard of care.
- In the near term, HCV genotype will continue to be an important factor influencing treatment decisions and clinical outcomes.

Objectives:
- Quantify the genotype distribution of HCV infected populations by region.
- Examine the genotype variations across regions.

Methodology:
- PubMed and Embase were searched for all articles published since 1999 containing the following search terms:
 - PubMed: (hcv OR hepatitis c*) AND (genotype* OR hepatitisvirus/genovirus* [Mesh])
 - Embase: (hepatitis c OR hcv) AND (genotype* OR genotype*)
- Approximately 17,000 studies were identified.
- The studies were reviewed and scored according to the following scale:
 - Estimate without a formal study
 - Small study in a select population with <100
 - Large study in a select population with 100-100
 - Small study in the general population with <100
 - Large study in the general population with >100
- All studies with a score of one star were ignored and the highest ranking study was selected for each country.
- Data from countries with available studies were grouped according to the Global Burden of Disease (GBD) classifications (2) and the World Bank regions.
- A regional estimate was calculated using a weighted average approach using the countries’ total infected HCV cases as the weighting factor.
- Regions where <10% of countries reported a genotype distribution were ignored.

Results:
- Genotype data were available for 74 countries, accounting for 67% of the total HCV infections (Table 1).
- Genotype 1b was the most common sub-type accounting for 27% of all infections. However, significant regional, country, and local variations existed.
- Infections in North America, Latin America, and Europe were predominantly G1 (60-75%) with G1b accounting for 25-35%, and 50-90% of all cases respectively.
- North Africa and the Middle East had a large G4 population (75%), which was attributable to the high prevalence of G4 in Egypt. When Egypt was excluded, the genotype distribution of this region was more similar to Europe with 54% of the HCV population being G1.
- The Asia Pacific region was predominately G1 (40%) followed by G3 (35%), largely driven by the HCV infected populations in India and Pakistan. G1b accounted for 30% of all infections in this region.
- Genotype 1 is more common in high income and upper middle income countries while genotypes 3 and 4 are more prevalent in low and lower middle income countries. However, the latter observation was strongly influenced by Egypt, India, and Pakistan.

TABLE 1: Countries and Regions Studied

<table>
<thead>
<tr>
<th>Region</th>
<th>Countries</th>
<th>Genotype 1</th>
<th>Genotype 2</th>
<th>Genotype 3</th>
<th>Genotype 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Latin America</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Europe</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Africa</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Asia</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 1: Data quality scores (by country) and HCV genotype distribution by Global Burden of Disease Regions

FIGURE 2: HCV genotype distribution by World Bank regions

Conclusions:
- Although this analysis found genotype distributions for 67% of the global HCV population, 75% of the countries did not have published data.
- Country level strategies are needed to manage HCV disease burden and until pan-genotypic therapies are available, genotyping will be required to determine the therapy type, duration, and expected response rate.
- Genotype studies in low-income and lower-middle-income countries are needed where ~<20% of the countries report a HCV genotype distribution.
- Genotype studies are needed in Africa to better plan the treatment of HCV infected population.
- Clinical trials in genotypes 3, 4, and 6 are required to provide access to the new therapies in lower middle and low income countries.

References:

Disclosures:
Support for this project was provided by the Center for Disease Analysis. H. Razavi, E. Gower, S. Hindman, and C. Estes are employed by the Center for Disease Analysis (CDA).