
www.thelancet.com/infection   Vol 16   February 2016 e10

Review

Lancet Infect Dis 2016; 
16: e10–21

Published Online
January 12, 2016
http://dx.doi.org/10.1016/
S1473-3099(15)00436-3

Toronto Centre for Liver 
Diseases, Toronto Western 
Hospital, University Health 
Network, Toronto, ON, Canada 
(M Brahmania MD, 
J Feld MD, A Arif MD, 
Prof H L A Janssen MD); 
and Department of 
Gastroenterology and 
Hepatology, Erasmus Medical 
Center University Hospital, 
Rotterdam, Netherlands 
(Prof H L A Janssen)

Correspondence to:
Prof Harry L A Janssen, Toronto 
Center for Liver Diseases, 
Toronto Western Hospital, 
University Health Network, 
Toronto, ON M5T 2S8, Canada
harry.janssen@uhn.ca

New therapeutic agents for chronic hepatitis B
Mayur Brahmania, Jordan Feld, Ambreen Arif, Harry L A Janssen

The treatment goal for chronic hepatitis B is true eradication of the hepatitis B virus, but this is rarely achieved with 
fi rst-line treatment regimens because of an inability to disrupt covalently closed circular DNA and an inadequate host 
immune response. Therefore, new antiviral agents are needed to target various stages of the hepatitis B virus lifecycle 
and modulation of the immune system. This Review provides a summary of available regimens with their strengths 
and limitations, and highlights future therapeutic strategies to target the virus and host immune response. These new 
agents can hopefully lead to a fi nite duration of treatment, and provide a functional and durable cure for chronic 
hepatitis B infection.

Introduction
Chronic hepatitis B aff ects about 250 million people 
worldwide and can lead to liver cirrhosis, liver failure, 
hepatocellular carcinoma, and death.1–3 Worldwide, 30% 
of cirrhosis and roughly 53% of hepatocellular carcinoma 
is attributed to chronic hepatitis B.1 The ideal goal of 
antiviral treatment is the complete eradication of the 
hepatitis B virus (HBV) from infected individuals, but 
this is rarely achieved because covalently closed circular 
DNA (cccDNA) remains in hepatocytes, and immune 
control over HBV is diffi  cult to induce. HBsAg loss or 
HBeAg seroconversion with viral suppression is deemed 
a successful response to therapy because of improved 
survival, reduction in hepatocellular carcinoma, and 
prevention of disease progression.4–6 First-line antiviral 
treatment options include nucleos(t)ide analogues such 
as entecavir or tenofovir, and pegylated interferon 
(peginterferon), which is mainly an immune modulator. 
Unfortunately, HBsAg loss is rarely achieved with these 
treatments and lifelong treatment is often needed, 
particularly with nucleos(t)ide analogues.7–10 Although an 
interim milestone to control HBV infection has been 
achieved through successful vaccination programmes 
beginning in the early 1980s,11 the treatment of chronic 
hepatitis B will remain a challenge because of the 
millions of chronically infected individuals and new 
incident infections resulting from incomplete vaccine 
coverage rates.12 More than 30 agents are in development, 
including novel strategies that target the virus and the 
host (table 1). Although some agents might not reach 
clinical use, others could become part of our treatment 
arsenal in the not too distant future. This Review 
highlights treatment approaches and agents in phase 1, 
2, and 3 clinical trials (and selected preclinical studies) to 
show how various steps in the viral lifecycle and 
stimulation of the host immune response might be used 
in the future to fi nd a functional and durable cure for 
chronic hepatitis B.

The hepatitis B virus replication cycle
HBV is a circular DNA virus with a partly double-stranded 
genome that belongs to the Hepadnaviridae family. It is a 
small, spherical structure containing a nucleocapsid 
composed of self-assembling core proteins and an outer 
lipid envelope made up of viral surface proteins—ie, 

HBsAg. The envelope is associated with binding and entry 
into hepatocytes, and the nucleocapsid encloses viral DNA 
and a DNA polymerase with reverse transcriptase activity.13 
The replication cycle of HBV is a complex process that 
begins with attachment of the virus to the cell-associated 
heparan sulfate proteoglycans, followed by the virus 
irreversibly binding to the hepatocyte-specifi c cellular 
sodium-taurocholate co-transporting polypeptide receptor 
(NTCP).14,15 After binding, HBV enters hepatocytes 
through either endocytosis or fusion with the viral 
envelope at the plasma membrane.16 As viral nucleocapsids 
are released into the cytoplasm, relaxed circular DNA 
(rcDNA), with covalently linked polymerase, enters the 
cell nucleus where the rcDNA genome is converted to the 
highly stable cccDNA. cccDNA is a template for 
transcription of viral mRNAs that code for three surface 
proteins, the HBV X protein, and pregenomic RNA, 
which is translated to produce the core and polymerase 
proteins and serves as the RNA template for reverse 
transcription of nascent viral genomes.17,18 The HBV core 
proteins are translated from the pregenomic RNA and 
self-assemble into nucleocapsids, which encapsidate 
pregenomic RNA and HBV polymerase, allowing genome 
replication to proceed. HBV polymerase is the only 
enzymatically active protein coded by the virus, and has 
RNA-dependent DNA polymerase, DNA-dependent DNA 
polymerase, and RNase H activity. Inside nucleocapsids, 
HBV polymerase uses pregenomic RNA as a template 
to synthesise the minus-strand viral DNA via its 
RNA-dependent DNA polymerase activity, which is then 
used as the template for plus strand DNA synthesis.19 
RNase H activity is needed to degrade the pregenomic 
RNA template during minus-strand DNA synthesis, 
which is initiated by a protein priming mechanism in 
which HBV polymerase itself serves a protein primer and 
a catalyst.20 The process eventually leads to nucleocapsid 
maturation with formation of rcDNA, which can either be 
enveloped by the surface proteins and secreted out of the 
cell as a virion particle, or delivered into the nucleus to 
amplify the existing cccDNA pool (fi gure).21

Antiviral treatments for chronic hepatitis B
International liver organisations (American Association 
for the Study of Liver Diseases, European Association 
for the Study of the Liver, and Asian Pacifi c Association 
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for the Study of the Liver) recommend three fi rst-line 
agents for the treatment of patients with treatment-
naive chronic hepatitis B, including nucleos(t)ide 
analogues and immunomodulators (tables 2 and 3).22–24 
Nucleos(t)ide analogues (entecavir and tenofovir) are 
able to suppress viral replication by inhibiting the 
reverse transcriptase activity of HBV polymerase, thus 
preventing viral replication. They have become the 

mainstay of chronic hepatitis B treatment, as they are 
potent antivirals with few side-eff ects and a high barrier 
to resistance. Both entecavir and tenofovir have shown 
effi  cacy in treating patients with chronic hepatitis B 
with HBeAg seroconversion rates about 30% and 
HBsAg loss rates between 4·4% and 13% after 5–8 years 
of follow-up.9,10 Interferon alfa and long-acting 
peginterferon are cytokines with immunomodulatory 

Mechanism of action Example drug Phase of clinical trial

Virus targeting

Entry inhibitor Targets NTCP receptor to inhibit virus entry Myrcludex B 2a

cccDNA degrader, silencer, 
or eliminator

Upregulation of APOBEC3A and 3B proteins 
causing cccDNA degradation; direct destruction 
of cccDNA; inhibiting rcDNA conversion to 
cccDNA; targeting the epigenetic control of 
cccDNA function

Lymphotoxin-β receptor
Interferon alfa
BSBI-25
Zinc fi nger nucleases
Di-substituted sulfonamides

1
Preclinical
Preclinical
Preclinical
Preclinical

RNA interference or gene 
silencer

RNA molecules inhibiting gene expression and 
release of new virions

ARC-520
ISIS-HBVRX
ALN-HBV
TKM-HBV
NUC B 1000
DNA-directed RNA interference
ALN-PDL

2
2
Preclinical
Preclinical
Preclinical
Preclinical
Preclinical

Assembly eff ector Inhibits HBV replication by causing 
destabilisation of viral nucleocapsid

HAPs (Bay 41–4109 and GLS4)
Phenylpropenamide (AT-61 and 130)
Isothiafl udine
NVR 3–778
GLS4

1
1
Preclinical
2
2

HBsAg release inhibitor Inhibits the release of HBsAg and HBsAg SVPs 
to boost restoration of host immune response

REP 2139-Ca
Rep 2165
Rep 2055
Nitazoxanide
Triazolo-pyrimidine inhibitors

2
Preclinical
Preclinical
Preclinical
Preclinical

New nucleos(t)ide 
analogues

DNA polymerase inhibitor GS-7340 (tenofovir alafenamide)
AGX-1009
LB80380 (besifovir)
MIV-2 (lagociclovir valactate)
CMX 157

3
1
3
1
2

Cyclophilin inhibitor Blocks HBV protein interaction with host cell 
cyclophilin and contributes to immune 
stimulation

CPI-431–32
OCB-030
Alisporivir

Preclinical
Preclinical
Preclinical

Immune system

Immunomodulators Boost host immune responses and have 
antiviral eff ect

Peginterferon lambda
Cytokines (interleukins 7, 12, 18, 21)
GS-9620 (TLR-7 agonist)
CYT-003 (TLR-9 agonist)
PD-1 blockade
Stimulators of interferon genes agonist
SB 9200 HBV

2b
1
2
Preclinical
Preclinical
Preclinical
2

Therapeutic vaccines Induce and stimulate
CD4 and CD8 T-cell response

GS-4774 (tarmogen)
HBsAg-antiHBs immunoglobulin
HB110
ABX203
HBsAg/HBcAg combination (NASVAC)
DNA vaccines
T-cell peptide epitome vaccine
DV-601
TG-1050 (transgene)
GI-13020
NOV-205

2
3
1
2
3
Preclinical
1b
1
1
1
1

NTCP=sodium-taurocholate co-transporting polypeptide. APOBEC=apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like. cccDNA=covalently closed circular 
DNA. HBV=hepatitis B virus. HAPs=heteroaryldihydropyrimidines. SVP=subviral particles. 

Table 1: Future treatments for chronic hepatitis B
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and antiviral eff ects, with potential advantages that 
include fi nite therapy, the absence of resistance 
mutations, and durable HBsAg seroconversion rates 
that are noted in about 10% of patients.7,8,25

Limitations of current therapy
True cure of HBV will need to either eliminate cccDNA or 
prevent transcriptional activity of cccDNA, but this is 
rarely achieved even with the use of both nucleos(t)ide 
analogues and interferon. Nucleos(t)ide analogues 
interfere late in the viral lifecycle, preventing DNA 
replication, but they do not aff ect the transcriptional 
activity of cccDNA or viral protein production, and very 
rarely induce immune control. HBsAg loss is therefore 
rare, and lifelong treatment is often needed to prevent 
viral rebound after treatment cessation,26,27 which might be 
in part due to the DNA-based genome of HBV, and a 
replication cycle that relies on a reverse transcriptase, 
which is error prone. HBV can process mutations at a 
high frequency because of viral replication, which results 
in a diverse population of viral variants in infected 
individuals, although the variants could have diminished 
replication competence and might not survive. 
Alternatively, nucleos(t)ide analogues might select for 

drug resistance mutations, although so far this has not 
been seen with tenofovir and in less than 2% of nucleoside-
naive patients given entecavir, which is much lower than 
the resistance rates with nucleosides such as lamivudine 
and telbivudine.10,28,29 Peginterferon mediates repression of 
cccDNA activity and has immune modulatory properties, 
which can result in viral clearance, but response was only 
recorded in a few individuals, and treatment uptake is 
limited by systemic side-eff ects, the need for subcutaneous 
injections every week, and safety concerns in patients with 
cirrhosis.30,31 As the understanding of HBV has improved, 
it has become clear that both viral factors (eg, core or 
precore mutants, replication errors) and determinants of 
the host immune response (eg, HLA haplotype, T-cell 
exhaustion) play a part in viral persistence. Novel strategies 
are therefore needed to create a shift in the treatment of 
chronic hepatitis B.

Combination therapy
Over the past decade there has been substantial interest 
in combining nucleos(t)ide analogues and peginterferon 
therapy with the hope that these agents might act 
synergistically. Suppressive therapy with potent 
nucleos(t)ide analogues might reduce virally mediated 

Figure: The HBV lifecycle and potential therapeutic targets
After HBV virions attach to the NTCP receptor, they are uncoated and transported to the nucleus, in which cccDNA serves as a template for viral transcription of 
pregenomic RNA, which then directs the synthesis of viral DNA and mRNA encoding all viral proteins and securing HBV persistence. Genomic replication of HBV 
happens via virally encoded polymerase and a reverse transcriptase. Encoded polymerase uses pregenomic RNA as a template to synthesise the minus-strand viral DNA 
via its RNA-dependent DNA polymerisation activity, which is then used by the encoded polymerase as the template for the plus strand DNA synthesis. The process 
eventually leads to nucleocapsid maturation as rcDNA is formed which can be either enveloped or secreted out of the cell as a virion particle or be delivered into the 
nucleus to amplify the cccDNA pool. Potential targets of the HBV lifecycle (indicated by red crosses) include entry inhibitors, cccDNA degradation, immune modulation, 
RNA interference, assembly eff ectors, HBV DNA polymerase inhibitors, and HBsAg release inhibitors.  HBV=hepatitis B virus. NTCP=sodium-taurocholate 
co-transporting polypeptide. cccDNA=covalently closed circular DNA. rcDNA=relaxed circular DNA. ER=endoplasmic reticulum. HBs=envelope protein. 
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T-cell exhaustion, to allow HBV-specifi c T cells to be 
more responsive upon peginterferon treatment. 
Combination therapy might reduce the risk of 
breakthrough resistance to long-term nucleos(t)ide 
analogues. Initial trials combining lamivudine with 
peginterferon were disappointing, with response rates 
similar to those noted for peginterferon alone. 
Treatment strategies with the more potent nucleos(t)ide 
analogues entecavir and tenofovir, either as sequential 
(nucleos[t]ide analogue followed by peginterferon, or 
peginterferon followed by nucleos[t]ide analogue), or 
concomitantly, showed more promising results, with 
improvement in HBsAg decline and increasing rates of 
sustained HBeAg and HBsAg seroconversion following 
therapy. Defi nitive trials are needed, because phase 2 
studies so far have been underpowered or lacked key 
control arms, making it diffi  cult to draw strong 
conclusions.32–36 In view of the poor cure rates with 
monotherapy with either peginterferon or nucleos(t)ide 
analogues, combination of immunomodulatory 

therapies or potent nucleos(t)ide analogue therapy with 
one of the virus-targeting systems (antigen inhibitors) 
and cccDNA inhibitors could ultimately prove to be the 
best option to cure persistent infection.

Virus targeting
Entry inhibitors
NTCP has been identifi ed as a functional receptor for 
HBV, because it interacts with a key region of the HBV 
envelope to allow entry of both HBV and hepatitis D 
virus, which also uses the HBV surface proteins.15,37 An 
ideal mechanism to eliminate new HBV infection is to 
silence NTCP. Myrcludex B, a synthetic lipopeptide that 
targets NTCP, has been shown to effi  ciently prevent 
viral spread from infected human hepatocytes ex vivo 
and in vivo.38–42 In a phase 2a clinical trial43 assessing 
safety and tolerability of myrcludex B, 40 HBeAg-
negative patients with chronic hepatitis B (HBV DNA 
>2000 IU/mL, median HBV DNA 4·7 log10 IU/mL, 
without cirrhosis) were treated for 24 weeks with doses 

AASLD (USA)21 EASL (Europe)22 APASL (Asia)23

Treatment defi nitely recommended HBV DNA >20 000
ALT >2 times ULN

HBV DNA >20 000
ALT >ULN
Liver biopsy showing moderate to 
severe infl ammation or fi brosis

HBV DNA >20 000
ALT >2 times ULN

Treatment should be considered HBV DNA 2000–20 000
ALT 1–2 times ULN
Older than 40 years, or liver biopsy 
showing moderate/severe 
infl ammation/fi brosis

HBV DNA >20 000
ALT <ULN, or liver biopsy showing 
moderate to severe infl ammation or 
fi brosis

HBV DNA >20 000
ALT <ULN, and liver biopsy showing 
moderate to severe infl ammation or 
fi brosis

Observe HBV DNA <20 000
ALT <ULN

HBV DNA <2000
ALT <ULN

HBV DNA <2000
ALT <ULN

Preferred fi rst-line treatment Peginterferon
Entecavir
Tenofovir

Peginterferon
Entecavir
Tenofovir

Peginterferon
Entecavir
Tenofovir

HBV DNA in IU/mL. AASLD=American Association for the Study of Liver Disease. EASL=European Association for the Study of Liver. APASL=Asian Pacifi c Association for the 
Study of the Liver. HBV=hepatitis B virus. ALT=alanine transaminase. ULN=Upper Limit of Normal. 

Table 2: Treatment recommendations from international organisations for HBeAg-positive patients

AASLD (USA)21 EASL (Europe)22 APASL (Asia)23

Treatment defi nitely recommended HBV DNA >20 000
ALT >2 times ULN

HBV DNA >2000
ALT >ULN
Liver biopsy showing moderate to 
severe infl ammation or fi brosis

HBV DNA >2000
ALT >2 times ULN

Treatment should be considered HBV DNA 2000–20 000
ALT 1–2 times ULN
Older than 40 years, or liver biopsy 
showing moderate to severe 
infl ammation or fi brosis

HBV DNA >2000
ALT <ULN, or liver biopsy showing 
moderate to severe infl ammation 
or fi brosis

HBV DNA 2000–20 000
ALT 1–2 times ULN
Older than 40 years, or liver biopsy 
showing moderate to severe 
infl ammation or fi brosis

Observe HBV DNA <20 000
ALT <ULN

HBV DNA <2000
ALT <ULN

HBV DNA <2000
ALT <ULN

Preferred fi rst-line treatment Pegylated interferon
Entecavir
Tenofovir

Pegylated interferon
Entecavir
Tenofovir

Pegylated interferon
Entecavir
Tenofovir

HBV DNA in IU/mL. AASLD=American Association for the Study of Liver Disease. EASL=European Association for the Study of Liver. APASL=Asian Pacifi c Association for the 
Study of the Liver. HBV=hepatitis B virus. ALT=alanine transaminase. ULN=upper limit of normal.

Table 3: Treatment recommendations from international organisations for HBeAg-negative patients
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ranging between 0·5 and 10 mg once a day. In the 
10 mg group, HBV DNA concentrations decreased by 
>1 log₁₀ IU/mL at week 12 in six (75%) of eight patients, 
but a lower response rate (7 [17%] of 40 patients) was 
noted in the lower dose cohorts. Furthermore, alanine 
transaminase (ALT) normalisation was reported in 22 
(55%) of 40 patients, but there was no noteworthy 
change in HBsAg concentrations, which is often used 
as a surrogate marker of active cccDNA transcription.43–45 
Because the activity of myrcludex B includes 
inactivation of the NTCP receptor, trouble with bile 
salt homoeostasis, hyperbilirubinaemia, and the 
metabolism of some drugs might be an issue, 
particularly if long-term therapy is needed.46 Although 
myrcludex can prevent the infection of new hepatocytes, 
it might be less eff ective in pre-existing infection. 
However, the ability to target NTCP might lead to future 
strategies using combination therapy with nucleos(t)ide 
analogues, peginterferon, or agents discussed in this 
Review, to increase clearance of previously infected 
hepatocytes. Myrcludex B might be attractive in the 
liver transplant setting, in which an entry inhibitor 
could prevent reinfection of the new liver.

cccDNA degradation, silencing, and elimination
After attachment to the NTCP receptor, HBV undergoes 
endocytosis, uncoating, and delivery of nucleocapsids to 
the nucleus where rcDNA is converted to cccDNA. 
Nucleos(t)ide analogue-based treatments can block the 
replication and formation of new cccDNA; however, they 
have negligible eff ect on existing cccDNA, which is key 
to viral persistence and reactivation after cessation of 
therapy.26,27 Strategies that use zinc fi nger nucleases and 
disubstituted sulfonamide compounds can inhibit 
cccDNA transcription by direct destruction of cccDNA, 
inhibiting rcDNA conversion to cccDNA, and by 
targeting the epigenetic control of cccDNA function. 
However, these agents are in the early phases of 
development and have only been studied in cell culture 
and primary duck hepatocytes.47–49 Another promising 
new approach is the activation of apolipoprotein B 
mRNA editing enzyme, catalytic polypeptide-like 
(APOBEC) proteins, which interact with the HBV core 
and translocate to the nucleus where they deaminate 
and subsequently degrade cccDNA. Results of well 
designed studies showed that activation of the 
lymphotoxin-β receptor (LTβR) upregulates APOBEC3B, 
and interferon alfa upregulates APOBEC3A. In-vivo and 
in-vitro stimulation of LTβR led to a reduction in HBV 
DNA and cccDNA concentrations with persistent eff ects 
after cessation of therapy and no hepatotoxic eff ects. 
However, long-term human data are still needed for 
LTβR agonists, as activation lasting longer than 1 year 
has been associated with development of hepatocellular 
carcinoma.50 Nevertheless, nucleos(t)ide analogue use 
followed by LTβR activation for a short period could be a 
novel strategy to eliminate cccDNA reservoirs.

An alternative strategy to target cccDNA is the 
clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, 
which uses a target RNA with sequence specifi city for 
conserved regions of DNA to guide the Cas9 nuclease 
to cleave the DNA at that site. Several groups have 
shown that conserved regions of cccDNA can be 
targeted with the CRISPR system and by combining 
several target RNAs, potent suppression and even 
complete elimination of cccDNA from infected cells 
and transgenic mice was achieved.51–53 The CRISPR 
strategy holds great promise for human gene therapy 
broadly but could be particularly useful for targeting a 
stable viral genome like that of HBV.

RNA interference and gene silencing
Small interfering RNAs (RNAi) bind and inactivate 
host or viral mRNA, preventing protein translation. 
Through target of RNA replicative intermediates, HBV 
is potentially susceptible to RNAi approaches. 
Developments in RNAi technology have overcome the 
challenge of delivery, which was the major barrier to 
clinical use. Stable RNAi-targeting HBV mRNA 
intermediates were shown to reduce expression of 
viral proteins (HBsAg and HBeAg) in mouse and 
chimpanzee models.54–56 A phase 2a randomised 
controlled trial57 studied 18 Asian HBeAg-negative 
patients who were taking entecavir and received a 
single intravenous dose of ARC-520 (1 mg, 2 mg, or 
3 mg), a stable pooled siRNA mixture to target all of the 
HBV RNA replicative intermediates, and showed a 22% 
mean reduction of HBsAg concentrations from 
baseline in the 2 mg/kg group, without any treatment-
related side-eff ects after 85 days of follow-up. Studies 
will assess if preliminary declines in HBsAg 
concentrations provide any clinically relevant outcomes 
and if higher doses can be used.

Gene silencing can be achieved by introducing a short 
antisense oligonucleotide complementary to an RNA 
target. Billioud and colleagues58 showed a dose-dependent 
(≥11 mg/kg per week) reduction of HBsAg concentrations 
of ≥2 logs after 4 weeks of treatment in vivo; however, 
combination treatment with entecavir was not 
substantially better than entecavir alone and HBsAg 
concentrations returned to baseline after 4 weeks from 
initial injection. ARC-520 and antisense oligonucleotide 
therapies have shown some early positive results, but 
further improvement of stable drug delivery methods 
and larger trials in heterogeneous populations with 
durable endpoints are needed to support the results seen 
thus far. Restoration of HBV-specifi c immune function, 
which is directly impaired by HBeAg and HBsAg, could 
be an added benefi t of using RNAi to reduce 
concentrations of these viral proteins. If immune 
responses are improved with RNA silencing, there 
might be substantial additional therapeutic potential to 
this approach.
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Assembly inhibitors
Hepatitis B reverse transcriptase is an important enzyme 
for viral replication and is the target of nucleos(t)ide 
analogue therapy. Targeting a single step in the viral 
lifecycle, particularly late in replication, has not been 
adequate to lead to viral clearance and resistance was an 
issue with early agents. Targeting of various steps in the 
viral assembly pathways could have additional benefi ts. 
Assembly inhibitors disrupt the HBV lifecycle by 
destabilising the nucleocapsid and by blocking RNA 
packaging to produce empty capsids without genetic 
information.59 Preclinical studies60–65 have shown that both 
the heteroaryldihydropyrimidine (ie, Bay 41-4109 and 
GLS4) and phenylpropenamide (AT-61 and AT-130) 
families of compounds inhibit HBV replication by 
misdirecting assembly causing destabilisation of capsids 
to produce incompetent viral particles for reverse 
transcription. Another compound, NVR 3-778, likewise 
acting as a direct HBV core and capsid protein inhibitor, 
progressed to phase 2 trials after showing that 40, 
predominantly white, men who received a single oral 
dose of 50 mg, 150 mg, 400 mg, or 800 mg reported no 
treatment or dose-related adverse events.66 Moreover, the 
pharmacokinetic profi le of NVR 3-778 showed that doses 
of 200 mg or more achieved suffi  cient plasma 
concentrations to inhibit HBV DNA for more than 24 h in 
cell cultures.66 Phase 1b assessment of dose-related safety, 
pharmacokinetics, antiviral effi  cacy, and potency of 
combination therapy with peginterferon are in progress.

HBsAg release inhibitor
HBV persistence is at least partly mediated by 
suppression of host immune responses by viral proteins. 
HBsAg was seen to suppress cytokine production and 
induce T-cell tolerance and exhaustion.67 Hence, control 
of HBsAg secretion was proposed as a strategy to 
restore HBV-specifi c T-cell-mediated immune control. 
Nitazoxanide, an antimicrobial with active metabolite 
tizoxanide, showed the ability to reduce HBsAg, HBeAg, 
HBcAg concentrations, and might act in synergy with 
lamivudine or adefovir in vitro, although, clinical trials 
have not progressed after small initial studies.68,69 
Similarly, a group of triazolo pyrimidine inhibitors have 
garnered interest as a result of their abilities both to 
inhibit HBsAg, and to be active against HBV variants 
that are resistant to nucleos(t)ide analogues. Although 
the exact mechanism of action is still under investigation, 
the inhibitors were seen to have no acute or long-term 
toxic eff ects in vivo, and displayed desirable pharma-
cokinetic profi les.70

HBsAg might have direct immunomodulatory eff ects 
on T cells, but HBV could use HBsAg subviral particles 
to blunt the host immune system and mediate 
immunological tolerance. Subviral particles are particles 
with HBV proteins on their surface that do not contain 
nucleocapsids or viral nucleic acids, which makes 
subviral particles non-infectious. The reason for their 

overproduction and their contribution to HBV 
pathogenesis is still unclear, but they are thought to 
mediate tolerance by serving as a decoy by adsorbing 
neutralising antibodies to delay the clearance of 
infection.71–74 REP 2139-Ca is in phase 2 trials (study 
number not available) and acts as a nucleic acid-based 
polymer to inhibit the release of subviral particles from 
infected hepatocytes, which might lead to restoration of 
the immune response. In a pilot study,75 12 patients 
positive for HBeAg and without cirrhosis were given 
REP 2139-Ca followed by peginterferon or thymosin 
alpha. Patients had reductions in concentration of HBV 
DNA and HBsAg, with four patients reporting HBsAg 
loss. In view of these favourable results, further studies 
are planned.

New nucleos(t)ide analogues
Nucleos(t)ide analogues are able to suppress an essential 
step in viral replication by inhibiting reverse transcriptase 
and have been approved for use since 2008. Formerly 
known as GS 7340, tenofovir alafenamide is another 
prodrug of tenofovir designed to resist rapid metabolism 
in the plasma (common with the fi rst generation 
prodrug tenofovir) thereby effi  ciently delivering active 
drug (tenofovir diphospate) to infected hepatocytes. 
Tenofovir alafenamide is converted to tenofovir (ie, a 
nucleoside monophosphate analogue) by cathepsin A 
and carboxylesterase-1 (Ces1), which is highly expressed 
on hepatocytes, and is subsequently converted to 
tenofovir diphospate by adenylate kinase and nucleotide 
diphosphate kinase. Tenofovir diphospate is taken up 
into hepatocytes where it is phosphorylated to the 
triphosphate, which inhibits the activity of HBV reverse 
transcriptase by competing with natural substrates and 
causing DNA termination after being incorporated into 
viral DNA.76 In an open label phase 1b study77 participants 
were randomly allocated to receive tenofovir alafenamide 
at doses of 8 mg, 25 mg, 40 mg, or 120 mg, or tenofovir 
300 mg, once a day for 28 days. The mean HBV DNA 
decline at week 4 was 2·7 logs and was equivalent to 
tenofovir with no noteworthy adverse events such as 
nephrotoxic eff ects or bone mineral loss. Beause 
tenofovir alafenamide has similar antiretroviral effi  cacy 
to tenofovir, the smaller doses (ten times lower dose), 
and paucity of systemic eff ects will probably cause it to 
replace tenofovir as the primary drug choice to treat 
chronic hepatitis B. Phase 3 trials have been completed 
with results expected by late 2015. Besifovir, an acyclic 
nucleotide phosphonate, is a nucleos(t)ide analogue that 
is structurally similar to tenofovir. Besifovir has a 
rapid intracellular phosphorylation and is eff ective in 
inhibiting HBV reverse transcriptase.78 A phase 2b 
randomised trial79 including both HBeAg-positive and 
HBeAg-negative Asian patients at doses of 90 mg and 
150 mg per day combined with entecavir 0·5 mg per day 
for 48 weeks showed identical reduction in HBV DNA, 
ALT concentrations and seroconversion rates as patients 
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given entecavir alone. No resistant mutations or renal 
toxicity were noted in this study; however, L-carnitine 
depletion was recorded in the besofovir group, which 
required oral L-carnitine supplementation. Although 
besofovir shows favourable characteristics in terms of 
viral suppression, questions around long-term safety 
might limit its use.79 Other compounds in phase 2 
clinical trials80–82 include CMX 157, AGX-1009, and 
lagociclovir valactate (MIV-210), which have shown 
promising phase 1 results (reduction in HBV DNA and 
cccDNA concentrations). Despite these new agents, any 
nucleos(t)ide analogue-based monotherapy will probably 
provide negligible HBsAg loss and cccDNA degradation, 
therefore strategies combining or sequentially adding 
other agents will probably be the mainstay of chronic 
hepatitis B therapy in the future.

Cyclophilin inhibitors
Cyclophilins are a group of proteins that are implicated in 
immunosuppression, although the exact mechanism of 
action is not wholly understood. Preclinical studies83,84 
with alisporivir in hepatitis C infection showed that 
cyclophilin inhibitors can block replication and contribute 
to immune system stimulation, to achieve higher 
sustained virological response (80%) than peginterferon 
and ribavirin for 24 weeks (58%). An in-vitro trial85 of 
alisporivir in HBV showed dose-dependent reduction in 
HBV DNA and HBsAg concentrations after 72 h of 
treatment. The mechanism of action is thought to be 
related to interference at several sites of the HBV lifecycle. 
Further studies in human beings are needed to establish 
whether cyclophilin’s mechanism of action will be 
enough to be given as a single agent or with combination 
therapy and to defi ne a safety profi le.

Immune targeting
Immunomodulators change the host response to HBV, 
with an aim to improve immune control or lead to viral 
eradication. Immune modulators considered for HBV 
therapy include interleukins, chemokines, and cytokines 
such as peginterferon alfa.

Interferon lambda
There are three classes in the interferon family. 
Interferon alfa and beta are type I interferons, and signal 
through a receptor that is present on every cell in the 
body. By contrast, interferon gamma is a type II 
interferon that binds to a receptor seen only on 
specialised immune cells. Members of the interferon 
lambda family, or type III interferons, bind to a receptor 
seen mainly on epithelial cells. Through engagement of 
its receptor, interferon lambda activates the Janus 
kinase-transducer and activator of transcription 
(JAK-STAT) pathway leading to induction of a similar 
range of genes as seen with type I interferons. These 
genes, collectively known as interferon-stimulated genes 
(ISGs), have antiviral, antiproliferative, and generally 

immuno modulatory properties. Although ISG induction 
is probably needed for viral clearance, the specifi c 
functions of the various ISGs are not well characterised 
and could cause the side-eff ects associated with 
peginterferon alfa treatment. Because of the modest 
distribution of the type III interferon-receptor, interferon 
lambda was proposed as an alternative interferon that 
would stimulate the same antiviral ISGs in hepatocytes 
but with a better side-eff ect profi le, because of reduced 
ISG expression in non-hepatic tissues. A pegylated 
version of interferon lambda was assessed in the 
phase 2b LIRA-B study,86 in which HBeAg-positive (HBV 
DNA >10⁵ IU/mL, ALT >1 times upper limit of normal 
[ULN] 47 U/L) interferon-naive patients were randomly 
assigned (1:1) to 180 μg subcutaneous peginterferon 
lambda or 180 μg subcutaneous peginterferon alfa per 
week for 48 weeks (both subcutaneously). Peginterferon 
lambda showed greater HBV DNA–ALT normalisation 
and HBsAg decline from baseline to the end of 
treatment; however, 24 weeks after the end of treatment 
peginterferon alfa showed higher rates of HBeAg 
seroconversion (25%) than peginterferon lambda (11%) 
and virological suppression with fewer ALT fl ares than 
peginterferon alfa.86,87 The fi ndings suggest that the 
systemic eff ects of interferon could be important for 
off -treatment sustainability of responses. This might 
suggest that HBV clearance is more associated with a 
potent adaptive immune response, and thus T-cell 
activation by the interferon is crucial for clearance as 
shown by the fl are in aminotransferases often seen with 
HBV clearance during interferon therapy. By contrast, 
hepatitis C is probably cleared by interferon-based 
therapy through the direct intracellular eff ect of induced 
ISGs with T cells having a less important role. There is 
probably little use for peginterferon lambda as a sole 
therapeutic option for chronic hepatitis B.

Other cytokine-based therapy
The innate immune response to HBV might have a role in 
elimination of chronic hepatitis B infection. Cytokines 
such as interleukin 7, interleukin 12, interleukin 18, and 
interleukin 1 play a part in B-cell and T-cell development 
and maintenance. These cytokines have a role in 
stimulating natural killer T cells to restore exhausted 
HBV-specifi c CD8 T cells, thus promoting inhibition of 
HBV replication. These molecules have shown promise in 
laboratory trials and are being assessed in phase 1 trials.88–92

PD-1 inhibitors
Persistence of HBV might be related to a blunted 
immune response to the virus, which is a combination of 
T-cell downregulation, dysfunction, and exhaustion. 
Programmed death-1 (PD-1) and its ligand programmed 
death ligand-1/2 (PD-L1/2) are expressed on T cells and 
play a part in T-cell regulation.93–99 In-vitro and in-vivo 
studies with PD-1 and PD-L1/2 antagonists either alone, 
or combined with nucleos(t)ide analogues or vaccine 
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treatment have led to increased HBV-specifi c T-cell 
responses. Studies in woodchuck models100,101 have shown 
similar results in the ability to boost T-cell responses, 
leading to inhibition of viral replication with elimination 
of cccDNA in a few woodchucks. Although trials in 
chronic hepatitis B patients are scarce, PD-1 antagonists 
in cancer patients have shown promising results with 
tumour regression in some patients with various tumour 
types. However, concerns have been raised about PD-1 
antagonism because of toxic eff ects seen in oncology 
trials, with serious grade 3 or 4 adverse events reported in 
9% of patients.102 Thus the use of PD-1 antagonists might 
be restricted to a relatively healthy chronic hepatitis B 
population in view of the side-eff ect profi le; however, 
second generation PD-1 inhibitors might be more 
selective and hold greater promise.

Toll-like receptor agonists
Toll-like receptors (TLRs) are important pathogen 
recognition receptors that stimulate innate and adaptive 
immune responses upon exposure to specifi c ligands. 
HBV downregulates TLRs in an attempt to evade innate 
immune responses. TLR agonists have been proposed as 
novel therapies that might induce endogenous interferon 
production and other innate responses, leading to 
induction of ISGs and other signalling cascades that 
inhibit HBV replication.103 The most promising data so 
far have focused on stimulating TLR7, which is usually 
activated by RNA viruses but can be stimulated by several 
small molecules. After successfully showing that the oral 
TLR7 agonist GS 9620 could induce long-term 
suppression of HBV DNA in chimpanzees and stimulate 
production of interferon alfa, GS 9620 was tested in 
human trials with 75 healthy people.104,105 Oral doses 
(single dose of 0·3 mg to 12 mg) of GS 9620 were well 
absorbed and well tolerated in doses up to 12 mg. The 
main adverse events were infl uenza-like symptoms 
similar to those seen with exogenous peginterferon alfa 
therapy but these were only seen in patients who received 
doses of 8 mg or 12 mg. Notably, serum interferon alfa 
was only detected at these higher doses, whereas ISG 
activation was seen at doses as low as 2 mg. The major 
advantages of TLR-7 therapy include having an oral 
formulation and the ability to use lower dosing regimens 
because activation happens in the gastrointestinal tract, 
enabling rapid uptake by liver through the portal 
circulation. Ultimately, it remains to be seen if clinically 
signifi cant changes in HBsAg or HBV DNA 
concentrations can be achieved at doses that do not 
produce interferon-like side-eff ects.

Therapeutic vaccination
Activation of the adaptive immune system to upregulate 
CD4 and CD8 T-cell responses to neutralise HBV is 
another potential mechanism to eliminate chronic 
hepatitis B. Previous vaccines, used alone or in 
conjunction with nucleos(t)ide analogues, have shown 

safety but induced weak responses with low rates of 
HBeAg and HBsAg seroconversion. The main challenge 
with therapeutic vaccination is the inability to break 
tolerance, thus new vaccine strategies targeting diff erent 
HBV proteins or adenoviral vaccine vectors (TG-1050) 
are being studied.106–114 GS-4774 (tarmogen) is a 
recombinant heat-killed whole yeast vaccine, expressing 
several viral antigens including HBV X, HBV S, and core 
antigens, which can induce both CD4 and CD8 T-cell 
responses. In a single-centre safety trial, immune 
responses were assessed by use of enzyme-linked 
immunospot (ELISpot) and lymphocyte proliferation 
assays (LPA) in 49 healthy individuals without previous 
HBV vaccination receiving 10, 40, or 80 yeast units 
(1 YU=1 × 10⁷ yeast cells) of GS-4774 either per week or 
per month for a total of 57 days. Irrespective of protocols, 
GS-4774 was well tolerated with no adverse events. Most 
patients showed a T-cell response when assessed by at 
least one of the assays at the end of the 85-day 
follow-up.115,116 Phase 2 trials are enrolling to assess 
GS-4774 alone or in combination with tenofovir in 
chronic hepatitis B patients (NCT019433799). The fi rst 
nasal vaccine, nasvac, is based on a combination of 
surface and core antigens of HBV, which synergistically 
induces priming of T cells (via activation of B cells) 
enabling them to act as antigen presenting cells.117 
A phase 1 double-blinded, placebo-controlled randomised 
clinical trial118 in 19 healthy men (with no serological 
markers of HBV) substantiated the safety and tolerability 
of the agent. Sneezing was the most common adverse 
event (34·1%), and was self-limited. Phase 2 trials have 
been completed with results eagerly expected. 

The antigen-antibody (HBsAg-HBIG) immunogenic 
complex with alum (YIC) is another vaccine approach 
that has been assessed. In a trial119,120 of 450 patients with 
chronic hepatitis B, 12 doses of either YIC or alum 
(placebo) alone were given for 24 weeks with no signifi cant 
diff erences reported in HBV DNA suppression, HBeAg 
seroconversion rates, or normalisation of liver function 
tests between the two groups. The absence of eff ect might 
be caused by immune exhaustion in the host.

Although therapeutic vaccines have long been an 
attractive approach for chronic hepatitis B, challenges 
with this strategy remain. Overcoming immune 
exhaustion seems to be the biggest hurdle, but other 
issues such as diff erences between genotypes and the 
best possible route will need to be established. Combining 
vaccines with other therapies might be an alternative. 
Viral suppression with potent nucleos(t)ide analogue 
therapy might reduce T-cell exhaustion; possibly 
enhancing the chances that subsequent therapeutic 
vaccination would be eff ective. 

Conclusion
Control of HBV has greatly evolved over the past 20 years, 
with the development of an eff ective treatment algorithm 
and the introduction of widespread vaccination 
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programmes. Unfortunately, available antiviral agents do 
not constitute a functional cure for chronic hepatitis B, 
and are limited by side-eff ects. However, with the 
emergence of activity in developing novel agents targeting 
diff erent stages in the HBV lifecycle and host immune 
response, the current theory might still hold promise for 
cure of HBV. The discovery of the NTCP receptor to 
prevent HBV entry into hepatocytes along with potent 
nucleos(t)ides can prevent new cccDNA formation, which 
might be combined with antigen or cccDNA inhibitors to 
disturb existing HBV particles. This in itself might mount 
an immune response, leading to functional cure. If 
needed, direct immune-modulating agents can be added 
to this framework if their safety profi le will allow 
widespread use. Nevertheless, although most agents are 
in early phase development, collectively they hold great 
promise for the future and hopefully help us achieve a 
cure in patients living with chronic hepatitis B.
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