Factors contributing to risk for cancer among HIV-infected individuals, and evidence that earlier combination antiretroviral therapy will alter this risk

Álvaro H. Borges, Robert Dubrow, and Michael J. Silverberg

INTRODUCTION
Cancer and HIV infection have been inextricably intertwined since the beginning of the AIDS pandemic [1,2]. Three cancer types, namely Kaposi sarcoma, non-Hodgkin lymphoma (NHL), and invasive cervical cancer (ICC), were soon found to have a particularly higher incidence in HIV-infected individuals and, for epidemiological surveillance purposes, have classically been referred to as AIDS-defining malignancies (ADMs) [3]. Including ICC in the list of ADM also served the purpose of emphasizing the importance of integrating gynecologic care into medical services for HIV-infected women [3]. However, the spectrum of cancer types observed in excess in HIV-infected individuals was subsequently broadened to encompass a number of non-AIDS defining malignancies (NADMs). With the advent of combination antiretroviral therapy (cART) resulting in prolonged life expectancy, the incidence of NADM rose more than three-fold [4] and its burden has now surpassed the burden of ADM [4,5,6]. Moreover, when compared with

Purpose of review
To critically appraise recent published literature about factors associated with cancer risk likely to be influenced by combination antiretroviral therapy (cART) in HIV-infected individuals, and the potential of earlier CART initiation to reduce this risk.

Recent findings
Factors leading to increased risk of non-AIDS-defining malignancies (NADMs) in particular remain poorly understood. Immunodeficiency appears to be key, whereas evidence is emerging that a direct pro-oncogenic effect of HIV, activated inflammatory and coagulation pathways, and cART toxicity may also contribute. By reducing HIV replication, improving immune function, and limiting chronic inflammation, cART initiation at higher CD4+ cell counts may, therefore, reduce NADM risk. However, cART only partly normalizes enhanced inflammation and coagulation seen during HIV infection and conflicting laboratory and epidemiological data have been reported as to whether (and how) cART affects NADM risk. Furthermore, secondary analyses of randomized controlled trials comparing early versus delayed cART initiation were inconclusive.

Summary
Continuous epidemiological surveillance is warranted to monitor trends in cancer incidence among HIV-infected individuals and to better understand the impact of earlier cART on NADM risk. The role of adjuvant anti-inflammatory or antithrombotic therapies to reduce cancer risk deserves further investigation.

Keywords
antiretroviral therapy, cancer, HIV, inflammation
KEY POINTS

- Cancer, in particular NADMs, imposes a growing burden on HIV-infected individuals. Immunodeficiency appears to be key to the increased cancer risk observed in this population, whereas evidence is emerging that a direct pro-oncogenic effect of HIV, activated inflammatory and coagulation pathways, and cART toxicity may also contribute.
- Because cART improves immune function, lowers HIV viral load, and reduces inflammation, cART initiation at higher CD4⁺ cell counts has been proposed as a potentially effective approach to reducing NADM risk.
- Nevertheless, cART only partly normalizes the enhanced inflammation associated with HIV infection and conflicting laboratory and epidemiological data have been reported as to whether (and how) cART affects cancer risk.
- Continuous epidemiological surveillance is warranted to better understand the impact of earlier cART on NADM risk. The role of adjuvant anti-inflammatory or antithrombotic therapies to reduce cancer risk deserves further investigation.

The changing epidemiology of cancer during HIV infection has rendered the categorization of malignancies into ADM and NADM out-of-date. Anal cancer, a human papillomavirus (HPV)-related NADM, is more strongly associated with HIV infection than ICC [15], with incidence rates 80–110 times as high for HIV-infected MSM compared with the general population [16**,17**]. Moreover, the incidence of anal cancer was found to be five-fold higher in HIV-positive than HIV-negative MSM [18]. Hodgkin lymphoma, an Epstein–Barr virus (EBV)-related NADM [19], is about five to 20 times more common in HIV-infected than in HIV-uninfected individuals [11**,20]. Hence, an emerging trend in recent studies is to categorize cancer into infection-related and infection-unrelated [5,7,9,10,12,21,22**].

The factors leading to an increased cancer risk among HIV-infected individuals remain poorly understood. Immunodeficiency and high prevalence of traditional cancer risk factors (e.g., smoking, oncogenic virus infection) [23–26] appear to be key, whereas evidence is emerging that direct pro-oncogenic effects of HIV, activated inflammatory and coagulation pathways, and cART toxicity may also contribute [6**,22**,25,27]. It remains elusive, however, whether these factors act independently or synergistically. By reducing HIV replication, improving immune function, and reducing inflammation at earlier stages of HIV infection, cART initiation at higher CD4⁺ cell counts has been proposed as a potentially effective approach for reducing NADM risk [6**,9,28,29]. The purpose of this review is to critically appraise recent evidence regarding established and suspected factors associated with cancer risk likely to be influenced by cART, including immunodeficiency, HIV viral load, enhanced inflammation and coagulation, cART toxicity, and the potential of earlier cART initiation to reduce this risk. We focused on Medline-indexed English literature published from June 2012 to June 2013 that evaluated cART effects, including immunodeficiency and viral replication, on NADM risk. In this review, we will not address traditional cancer risk factors.

IMMUNODEFICIENCY

The strong relationship between lower CD4⁺ cell count (i.e., immunodeficiency) and increased ADM risk is well established [6**]. Furthermore, there is mounting evidence for an inverse relationship between CD4⁺ cell count and NADM risk as well [6**]. Although earlier studies that used static (i.e., time-fixed) CD4⁺ cell measures were inconsistent regarding this relationship, more recent studies that used time-updated measures of CD4⁺ cell count have observed associations between lower recent CD4⁺ cell count and increased risk of NADM (grouped) and of a range of specific cancer types. These reports have been reviewed in detail elsewhere [6**]. As mentioned above, HIV-infected individuals have been found to be at a particularly higher risk of infection-related NADM [5,10,12,13]. Moreover, infection-related NADM may be diagnosed at later stages and may be associated with elevated morbidity and mortality in people with HIV infection [30–32]. Furthermore, the augmented risk of infection-unrelated NADM observed among individuals with lower CD4⁺ cell counts [9,28,29,33–36] is
consistent with a possibly impaired surveillance of premalignant and malignant cells (or with an unknown viral component to cancer types that are currently considered infection-unrelated). Thus, HIV-associated immunodeficiency appears to exert its cancer-predisposing effects through two main mechanisms: reduced clearance and control of oncogenic virus infection and reduced immune surveillance of malignant cells.

HIV VIRAL LOAD AND DIRECT ONCOGENIC EFFECTS OF HIV

Some studies have reported an association between ongoing viral replication and cancer risk. In one report, both cumulative and current HIV RNA levels more than 500 copies/ml were independently associated with increased risk of ADM [37]. In another study, a direct relationship was found between current HIV RNA level and risk of Kaposi sarcoma and NHL, and between duration of time with HIV RNA more than 100,000 copies/ml and anal cancer risk [28]. Evidence has accrued indicating that HIV itself, via tat and Vpr proteins, may have direct pro-oncogenic effects. The potential mechanisms are multiple and complex, involving synergism with other pro-oncogenic viruses [38], disruption of cell cycle regulation [39], blockage of tumor suppressor gene function [40], promotion of chromosome instability through the inhibition of telomerase activity [41], impairment of DNA repair function [42], induction of tumor angiogenesis [38,43], and enhancement of the effects of exogenous carcinogens [44,45].

ENHANCED INFLAMMATION AND COAGULATION

More recently, evidence has emerged linking activated inflammatory and coagulation pathways, as demonstrated by higher plasma levels of biomarkers, to cancer risk. In the Strategies for Management of Antiretroviral Therapy (SMART) study [46], structured cART interruptions were simultaneously associated with higher levels of coagulation and inflammatory biomarkers [47] and increased risk of cancer [48]. In a recent study of ours, we investigated the relationship between plasma levels of interleukin-6 (IL-6), a pro-inflammatory cytokine, C-reactive protein (CRP), an inflammatory marker whose hepatic production is stimulated by IL-6, and D-dimer, a fibrin-degradation product and marker of enhanced coagulation, and the risk of cancer among 5000 HIV-infected individuals enrolled in the control arms (i.e., standard of care) of three randomized trials [22*]. Increasing baseline biomarker plasma levels were independently associated with higher cancer risk; the hazard ratio per doubling in biomarker level was 1.38 ($P < 0.001$) for IL-6, 1.16 ($P = 0.001$) for CRP, and 1.17 ($P = 0.03$) for D-dimer. Results were similar for infection-related and infection-unrelated cancers. This association was strongest for IL-6, the only biomarker that remained significantly associated with cancer risk with simultaneous adjustment for all three markers. Although not providing definitive evidence for a causal link between enhanced inflammation/coagulation and cancer risk during HIV infection, these findings do indicate that trials of interventions that reduce inflammatory and coagulation biomarker levels, in particular IL-6, may be warranted.

COMBINATION ANTIRETROVIRAL THERAPY TOXICITY

With regard to cART toxicity as a risk factor for cancer, a number of studies have failed to detect positive associations between cART use and cancer risk [49–52]. Furthermore, the beneficial effects of cART on HIV replication, immune function, and inflammation suggest that cART use would lead to a reduction in overall cancer risk [6*,9,28,29]. Nevertheless, potential carcinogenic effects of specific cART agents and drug classes may result in increased risk of cancer. This outcome is the case not only for toxic, older drugs, such as zidovudine [53,54], but also for antiretrovirals currently recommended as first-line therapy for treatment-naive patients. Protease inhibitors have been linked to a higher risk of anal cancer in observational studies after adjustment for important confounders [55*,56,57] and efavirenz, a nonnucleoside reverse transcriptase inhibitor, was associated with increased risk of Hodgkin lymphoma in one study [58]. In a recent report, raltegravir, an integrase inhibitor, was found to induce host DNA rearrangements, which, from a theoretical point of view, may have unforeseen consequences including an increased risk of cancer [59]. It is also biologically plausible that, by reducing immunologic surveillance of malignant cells, CCR5 inhibitors, a drug class increasingly used in treatment-experienced individuals who failed previous cART regimens, may also lead to an increased incidence of NADM [60]. However, in the absence of any epidemiologic evidence, the clinical relevance of the potential carcinogenic effects of integrase and CCR5 inhibitors remains to be determined.

WOULD EARLIER ANTIRETROVIRAL THERAPY INITIATION REDUCE THE RISK OF NON-AIDS-DEFINING MALIGNANCIES?

There is global consensus that the overall risk:benefit ratio of cART initiation at CD4+ cell counts below 350 cells/μL is favorable. However, given the lack of
randomized trial evidence and inconsistent results from observational studies [61,62], a debate on whether and when to initiate cART at higher CD4⁺ cell count thresholds is still unfolding [63*,64*]. This has resulted in inconsistencies among treatment guidelines. The US Department of Health and Human Services guidelines [65] recommend cART for all HIV-infected persons, regardless of CD4⁺ cell count (i.e., no threshold), whereas the British HIV Association guidelines only recommend cART initiation in asymptomatic persons with CD4⁺ cell counts below 350 cells/µL, an exception being serodiscordant couples, wherein cART can be initiated in asymptomatic HIV-positive individuals with higher CD4⁺ cell counts to reduce the risk of transmission to the HIV-negative partner [66]. The WHO, in its newest guidelines, recommends cART initiation when CD4⁺ cell counts drop below 500 cells/µL [67]. Earlier cART initiation has clear benefits in terms of reduced HIV transmission at the population level [68], but is not without potential drawbacks in individuals with early HIV infection and thus low risk of disease progression, including cART toxicity, risk of drug resistance, and required commitment to life-long therapy.

There is evidence that earlier cART initiation, by preventing immune deterioration associated with the decline in CD4⁺ cell counts, reduces Kaposi sarcoma and NHL risk [69–71]; indeed, cART initiation results in regression of early stage Kaposi sarcoma [72]. Furthermore, because cART improves immune function, lowers HIV viral load, and reduces inflammation, earlier cART initiation has been suggested as a potential approach for reducing NADM risk as well, among HIV-infected individuals [6**,9,28,29]. Thus, reduced incidence [73*,74*] and even regression of HPV-related premalignant squamous intraepithelial lesions [75*] following cART initiation have been reported. Alongside their potential benefit in terms of cancer prevention through immune reconstitution and reduced inflammation and viral suppression, some drugs used in cART regimens have been found to have a direct antineoplastic effect. In in-vitro and in-vivo experiments, protease inhibitors were shown to block angiogenesis [76,77] and inhibit tumor growth and invasion [77]. Similarly, efavirenz was found to have selective antitumor cytotoxic effects [78] and to inhibit proliferation and differentiation of neoplastic cells [79]. However, the clinical relevance of these findings is yet to be determined and, as discussed above, conflicting laboratory and epidemiological evidence suggests that some cART agents or classes may be associated with increased NADM risk.

The definitive way to determine the effect of earlier cART initiation on risk of NADM is to conduct a large, cancer endpoint-driven randomized controlled trial. However, such a trial would require a very large sample size with extended follow-up. Currently, additional randomized evidence to inform this debate can be obtained only from secondary analyses of trials in which cancer events were not primary endpoints. For two [80,81] of three contemporary randomized trials comparing immediate versus delayed cART initiation in treatment-naive patients [68,80,82], data on NADM outcomes have been reported (Table 1), with no difference noted between the two strategies. The number of NADM events was, however, too small and much longer follow-up will be required to demonstrate differences (if any) between early versus deferred cART initiation. The deferred strategy in these trials allowed CD4⁺ cell counts to drop far below the thresholds currently recommended for cART initiation by the majority of treatment guidelines [65,66,83]. In this respect, data from the ongoing Strategic Timing of AntiRetroviral Treatment (START) study [84], a large (N = 4600) randomized trial, will be of particular interest. This study, with a composite clinical endpoint including NADM, is comparing immediate versus deferred (i.e., when CD4⁺ cell counts drop below 350) cART initiation in HIV-positive persons with CD4⁺ cell counts higher than 500 cells/µL.

Finally, virological suppression induced by cART only partly normalizes the activated inflammatory and coagulation pathways observed in persons with HIV [85,86]: the reduction of T-cell activation as a result of effective therapy does not reach the level of HIV-uninfected controls [87]. Should activated inflammatory or coagulation pathways be demonstrated definitively to play a causal role in carcinogenesis among HIV-infected individuals, adjunctive anti-inflammatory or antithrombotic therapies may be required to further reduce cancer risk in this population [22**]. In an AIDS Clinical Trial Group observational study investigating whether statin use is associated with decreased risk of serious non-AIDS-defining events [88**], statin use was found to be associated with a 57% reduction in NADM risk. As no significant benefits were observed for cardiovascular events, it was hypothesized that the reduction in cancer risk was driven by cholesterol-independent, anti-inflammatory properties of statins. The lack of an inverse association between statin use and cardiovascular events may also be explained by unknown biases (as such an association would be expected) or by low statistical power for cardiovascular events (adjusted and weighted hazard ratio = 0.89; 95% confidence
interval $= 0.32–2.44). However, the report findings are consistent with a case–control study nested within an HIV cohort in which statin exposure, but not use of other lipid-lowering drugs, was found to be associated with a significantly decreased risk of NHL [89], a cancer type whose development was shown to be preceded by chronic immune activation [90,91].

CONCLUSION

Cancer, in particular NADM, imposes a growing burden on the aging population of HIV-infected individuals. Immunodeficiency and the high prevalence of traditional cancer risk factors (e.g., smoking, oncogenic virus infection) appear to be key to the increased cancer risk observed in this population, whereas evidence is emerging that a direct pro-oncogenic effect of HIV, activated inflammatory pathways, and cART toxicity may also contribute to the higher risk. Because cART improves immune function, lowers HIV viral load, and reduces inflammation and cART toxicity may also contribute to and lower the risk, new strategies to reduce NADM risk deserve further investigation.

Table 1. Impact of immediate versus deferred initiation of combination antiretroviral therapy on non-AIDS-defining malignancy incidence: data from randomized controlled trials involving combination antiretroviral therapy-naive HIV-positive persons

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size</th>
<th>Median follow-up time (years)</th>
<th>Median baseline CD4+ cell count (cells/µl)</th>
<th>Deferral strategy</th>
<th>Median CD4+ cell count (cells/µl) at cART initiation in the deferred arm</th>
<th>NADM in immediate cART initiation arm</th>
<th>NADM in deferred cART initiation arm</th>
<th>Relative risk (95% CI) for NADM (immediate versus deferred cART)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART a [80]</td>
<td>249</td>
<td>2.6</td>
<td>437</td>
<td>cART deferred until:</td>
<td>245</td>
<td>0/131</td>
<td>0/118</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. CD4+ cell declined to < 250 cells/µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. CD4+ cell percentage declined to $<15%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Symptoms of HIV disease developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPTN 052 [81]</td>
<td>1761</td>
<td>2.1</td>
<td>428</td>
<td>cART deferred until:</td>
<td>229</td>
<td>3/886</td>
<td>3/875</td>
<td>0.99 [0.20–4.88]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. CD4+ cell declined to < 250 cells/µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. AIDS-defining illness developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pooled data from the two trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1017</td>
<td>3/993</td>
<td>0.98 [0.20–4.83]</td>
<td></td>
</tr>
</tbody>
</table>

\(cART\), combination antiretroviral therapy; CI, confidence interval; NADM, non-AIDS-defining malignancy; SMART, Strategies for Management of Antiretroviral Therapy.

aOnly includes the subset of patients who were treatment-naive at study entry.

Conflicts of Interest

This work was supported in part by the National Cancer Institute, the National Institutes of Health, the National Institute of Allergy and Infectious Diseases, and the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Acknowledgements

The authors are grateful to Jacqueline Neuhaus, University of Minnesota, for checking the cancer figures in the subset of treatment-naive participants of the SMART study and to Professor Jens Lundgren, Department of Infectious Disease, Rigshospitalet, for critically reading the article.
Does antiretroviral treatment at high CD4 counts reduce disease risk for HIV-positive patients?

54. In this cross-sectional study among Dutch HIV-positive MSM, cART use was independently associated with reduced prevalence of anal intraepithelial neoplastic lesions and anal HPV infection.

56. In this cohort study among HIV-positive South-African women, cART use was associated with a reduction in the incidence and progression of cervical intraepithelial lesions.

58. In this cohort study reporting data from the Canadian Women’s HIV Study, cART use was associated with increased clearance of oncogenic HPV and regression of cervical intraepithelial lesions.

74. In this cross-sectional study among Dutch HIV-positive MSM, cART use was independently associated with reduced prevalence of anal intraepithelial neoplastic lesions and anal HPV infection.

76. In this cohort study among HIV-positive South-African women, cART use was associated with a reduction in the incidence and progression of cervical intraepithelial lesions.

78. In this cohort study reporting data from the Canadian Women’s HIV Study, cART use was associated with increased clearance of oncogenic HPV and regression of cervical intraepithelial lesions.

