The brain and the kidney connection
A model of accelerated vascular cognitive impairment

Anne M. Murray, MD, MSc

Patients with chronic kidney disease (CKD) exhibit tremendously high levels of symptomatic and occult cerebrovascular disease and associated inflammatory factors, homocysteine, anemia, hypertension, and diabetes. As these risk factors overshadow aging and nonvascular factors, patients with CKD represent a potential model of accelerated vascular cognitive impairment.

The brain and kidneys may be considered organs on parallel trajectories, subject to shared cardiovascular risk factors, with microvascular pathologic processes mediated by inflammatory and oxidative processes taking place in similar low-resistance vascular beds and endothelial structures. Impaired endothelial function in the brain is manifested by defects in the blood-brain barrier and susceptibility to microinfarcts, lacunar infarcts, and white matter changes, and in the kidney by impaired glomerular filtration and secondary protein leakage, or proteinuria. Independently, the renal toxic effects of uremia, calcium-phosphate, other metabolic disturbances, and a potential genetic predisposition to exaggerated inflammatory response likely accelerate cognitive decline.

In this issue of Neurology®, Buchman et al. begin to unravel the convoluted relation between renal and cognitive impairment. Recent studies have described a graded, cross-sectional association between estimated glomerular filtration rate (eGFR) or proteinuria (albumin/creatinine ratio >30 mcg/mg) and brief cognitive screening tests, tests of specific cognitive domains, or dementia. Longitudinal analyses have measured the relation between eGFR and dementia, or incident cognitive decline on the Modified Mini-Mental State (3MS) examination. None has measured the effect of eGFR on rate of cognitive decline globally, using a detailed cognitive battery, and within multiple cognitive domains.

In the Rush Memory and Aging Project (n = 886 community-dwelling adults without dementia, mean age 80.6 years), lower eGFR or having CKD (eGFR <60 mL/min/1.73 m²) was associated with more rapid rate of global cognitive decline over approximately 3.4 years. For each eGFR reduction of 15 mL/min/1.73 m², or at eGFR 45 mL/min/1.73 m² (equivalent to about 1 SD), the increased rate of global cognitive decline had the approximate effect of 3 years of aging. Given the mean age of this cohort and the known acceleration of dementia incidence after age 75 years, the added effect of 3 years of aging represents substantial cognitive decline. Likewise, having CKD was equivalent to 75% of the effect of an APOE4 allele on the rate of cognitive decline. Renal impairment was associated with impaired global cognitive function, measured by the summary z score of 19 cognitive tests, and with the specific cognitive domains of episodic memory, semantic memory (verbal category fluency), and working memory, but not with visuospatial function or processing speed.

In a previous analysis, an eGFR less than 45 mL/min/1.73 m² was associated with an increased risk of a 5-point decline on the 3MS, or a score <80 (adjusted odds ratio 2.43, 95% confidence interval 1.38–4.29). Thus, this loss of approximately half of renal reserve may be a useful biomarker for increased risk of cognitive decline.

The fact that other studies have not consistently found eGFR to be associated with cognitive decline does not refute the authors’ findings. It suggests that renal-associated cognitive impairment is more vascular in origin than neurodegenerative, and that the trajectory and domains of cognitive impairment may differ for each patient.

Buchman et al. point out that subclinical vascular disease appears to play a strong role in the pathophysiology of cognitive impairment in patients with CKD. Cystatin C (a novel and perhaps more reliable measure of renal function) and lower eGFR are associated with silent stroke. Prevalence of silent infarcts increases with CKD stage; systolic blood pressure >140 mm Hg multiplies this risk by 1- to 2-fold. Not surprisingly, clinically evident stroke is more common as CKD advances; incidence is as...
high as 15% per year for hemodialysis patients, vs 2.5% in the general Medicare population. Brain imaging studies in CKD and dialysis patients report high rates of white matter disease and atrophy. In the Rotterdam Study, lower eGFR was significantly associated with brain atrophy and deep white matter lesion volume, and inversely associated with total white matter volume, but unrelated to gray matter volume on fully adjusted analyses.

Most of the patients with CKD in the Rush Memory and Aging Project had relatively early and mild CKD (mean eGFR, 59 mL/min/1.73 m²), and only 29 patients (3.5%) had advanced CKD (eGFR < 30 mL/min/1.73 m²). Thus, results may not generalize to patients with advanced CKD. Further, knowing the degree to which renal function covaries with cognitive function over time would be important.

For now, we need to practice preventive neurology by screening younger patients for cardiovascular risk factors, all older patients for CKD with measures of serum creatinine and urine albumin/creatinine ratio, and patients with known CKD for cognitive impairment. If a patient's renal function is reduced by more than half, cognitive reserve is also likely depleted and should be assessed. Finally, patients with CKD should be targeted for aggressive stroke prevention.

DISCLOSURE

Dr. Murray receives research support from the NIH (NIA/NHLBI NO1-HC-95183 (Co-investigator; PI of the MN/IA Network), NIDDK NO1-DK-7-5002 (Co-investigator), and NIA 5 K23 AG021174-01A2 (PI)), from the Feeder-Lampert Chair in Aging at the University of Minnesota, and the Minneapolis Medical Research Foundation, and holds stock in Medtronic Inc.

REFERENCES

The brain and the kidney connection: A model of accelerated vascular cognitive impairment
Anne M. Murray

Neurology 2009;73:916-917 Published Online before print August 19, 2009
DOI 10.1212/WNL.0b013e3181b99a2e

This information is current as of August 19, 2009

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/73/12/916.full.html

References
This article cites 13 articles, 9 of which you can access for free at:
http://www.neurology.org/content/73/12/916.full.html##ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
http://www.neurology.org/content/73/12/916.full.html##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cognitive Disorders/Dementia
http://www.neurology.org//cgi/collection/all_cognitive_disorders_dementia
Cognitive aging
http://www.neurology.org//cgi/collection/cognitive_aging
Cohort studies
http://www.neurology.org//cgi/collection/cohort_studies
Risk factors in epidemiology
http://www.neurology.org//cgi/collection/risk_factors_in_epidemiology

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright ®. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.