HCV reinfection incidence and spontaneous clearance rates in HIV-positive men who have sex with men in Western Europe

Patrick Ingiliz1,*,1, Thomas C. Martin2,1, Alison Rodger3, Hans-Jürgen Stellbrink4, Stefan Mauss5, Christoph Boesecke6, Mattias Mandorfer7, Julie Bottero8, Axel Baumgarten1, Sanjay Bhagani3, Karine Lacombe8,9, Mark Nelson2,10, Jürgen K. Rockstroh8, NEAT study group

1Center for Infectiology (CIB), Berlin, Germany; 2Chelsea and Westminster Hospital, London, United Kingdom; 3The Royal Free Hospital, London, United Kingdom; 4Infectiology Center Hamburg (ICH), Hamburg, Germany; 5Center for HIV and Hepatogastroenterology, Duesseldorf, Germany; 6University of Bonn, Department of Medicine I, Bonn, Germany; 7Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; 8Service des maladies infectieuses et tropicales, Hôpital Saint-Antoine, AP-HP, France; 9Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France; 10Imperial College School of Medicine, London, United Kingdom

Introduction

Liver disease represents a major cause of morbidity and mortality among patients infected with the human immunodeficiency virus (HIV) in the developed world [1]. In the setting of effective combined antiretroviral therapy (cART) and the successful preservation of a patient’s immune function, chronic infection with hepatitis C virus (HCV) is currently the main cause for liver related mortality due to liver failure and hepatocellular carcinoma [2,3].

In recent years, HCV seroconversions within European HIV cohorts have been reported among people who inject drugs (PWID) and men who have sex with men (MSM) [4,5]. In the case of the MSM community, several outbreaks of acute HCV infection have been described in Western metropolitan areas over the last decade associated with high risk sexual practices, genital ulcer disease and recreational drug use including parenteral administration [6–8]. Treatment uptake with interferon-based therapy has generally been high in the HIV-positive MSM population and high sustained virological response (SVR) rates have been reported as many, if not most, are treated in the acute infection phase [9]. Yet despite these outcomes the epidemic has continued unabated [5,10].

Several new direct-acting antivirals (DAAs) have been approved for interferon-free treatment of chronic HCV in Europe. Most of these agents are characterized by a favorable interaction profile with antiretroviral medication and SVR rates above 90% in clinical trials in the HIV/HCV coinfected population [11–14].

Keywords: HCV reinfection; Acute hepatitis C; HIV-HCV coinfection; SVR; Spontaneous clearance; HCV therapy.

Received 30 November 2015; received in revised form 30 August 2016; accepted 7 September 2016

* Corresponding author. Address: Center for Infectiology (CIB), Seestr. 13, 13353 Berlin, Germany. Tel: +49 30 451988940; fax: +49 30 4519889424.
E-mail address: ingiliz@zibp.de (P. Ingiliz).

These authors contributed equally to this work.
Mathematical modeling predicts if the required scale-up in treatment uptake with these new compounds is achieved the result would be substantial reductions in HCV prevalence in HIV infected MSM within a decade [15,16]. Further benefits have been predicted if treatment is combined with an intervention to reduce behavioral risk, which makes the eradication of HCV an achievable goal in the HIV–HCV coinfected population in Western Europe.

In the presence of maintained risk behavior, HCV reinfections have been described in PWID and MSM who either cleared their initial infection spontaneously or were successfully treated with interferon-based therapies [17–20]. In a recent meta-analysis of 61 studies, the five-year risk of HCV reinfection in HIV infected MSM was as high as 15% and higher than in studies on PWID [21]. Two studies to date have described reinfection incidence among HIV–HCV coinfected MSM with reported rates of 8–15 per 100 person-years (py) [19,22]. More recently, HCV reinfections have also been reported in phase III trials of DAA HCV compounds [12,14,23] nearly all of which have occurred among HIV infected MSM.

Data from London reported that individuals who spontaneously clear their acute infection may be at lower risk of future HCV reinfection when compared to those who are treated and achieve SVR. This indicates that a degree of protective immunity may develop for some patients [19]. An effective immune response against HCV through multiple infections has been shown in animal models [24]; however, studies among PWID have failed to consistently demonstrate a protective effect [18,25].

An accurate description of the HCV epidemic including a concise observation of reinfections in specific populations will be crucial to achieve the goal of HCV eradication and to reduce costs of repeated DAA treatment. This study quantifies the rate of HCV reinfections among HIV infected MSM from seven urban European areas and investigates potential variables associated with repeat spontaneous viral clearance.

Methods

The dataset for this analysis was merged from eight centers in four countries within the NEAT (European AIDS Treatment Network) consortium: The Chelsea and Westminster Hospital and the Royal Free Hospitals, London, the St. Antoine Hospital, Paris, the Center for Infectology, Berlin, the Center for Infectious Medicine Hamburg, the Center for HIV and Hepatogastroenterology, Düsseldorf, the University Hospital Bonn, and the Medical University of Vienna.

In all centers, the available data have been homogenized due to previous collaborations such as the NEAT Probe-C cohort.

All HIV-positive MSM from these centers with a history of a cured first HCV infection were identified with subsequent HCV PCR results followed through time to detect reinfection.

HCV cure was defined as follows:

- Patients with SVR defined by a negative HCV PCR at least 12 weeks after the end of an interferon-based treatment and at least one subsequent HCV PCR measurement.
- Patients with a spontaneously cleared HCV infection, defined by at least two negative HCV PCR measurements at least 24 weeks apart following HCV infection.

The following data were collected for all patients: age, date of diagnosis of acute HCV infection, HCV genotype, date of HCV cure, whether cure was a result of treatment or spontaneous clearance, and date of last follow-up visit. HCV RNA measurements were not standardized and depended on local operating procedures which ranged between once per year and every three months and in the case of newly developed ALT elevation.

Results

In calculating reinfection incidence, 54 patients from three centers were excluded due to incomplete datasets (no date for end of follow-up, no date for start of follow-up, incorrectly entered end of follow-up date). 552 patients were therefore included in the analysis representing 1952 py of follow-up, with a median follow-up time of 3.0 years (IQR 1.6–4.9, min 0.02/max 11.4 years).

The overall median follow-up time was 3.0 years (interquartile range (IQR) 1.6–4.9 years).
In total, 143 HCV reinfections occurred at a rate of 7.3/100 py (95% confidence interval (CI) 6.2–8.6). The median duration to reinfection was 2.0 years (IQR 1.1–3.3 years). There was a trend for higher reinfection incidence among individuals who achieved SVR following treatment for their incident infection (7.8/100 py) compared to reinfection incidence among individuals who had spontaneously cleared their incident infection (4.9/100 py; crude unadjusted hazard ratio (HR) for reinfection 0.62, 95% CI 0.32–0.95, \(p = 0.06 \)). Fig. 1 is a Kaplan-Meier curve showing survival from reinfection for all patients with 95% CI.

Sixty-four men either spontaneously cleared or were successfully treated for their subsequent HCV reinfection and had follow-up data available representing 143 py of follow-up (median follow-up 1.8 years, IQR 0.9–2.8). Of these 64 men, 27 presented with a second reinfection at a median of 1.7 years (IQR 1.2–2.4) after cure of the prior infection. The second reinfection incidence rate was significantly higher than the first reinfection incidence at 18.8/100 py (95% CI 12.9–27.5; HR for second reinfection 2.51, 95% CI 1.7–3.8, \(p < 0.001 \)).

Table 2 depicts the reinfection incidence per center, with the highest being in Paris (21.8/100py, 95% CI 11.3–41.8), followed by Vienna (16.8/100 py, 95% CI 8.7–32.3), Berlin (8.2/100 py, 95% CI 5.6–12.1), Duesseldorf (8.1/100 py, 95% CI 4.6–14.3), and London/Chelsea Westminster (7.0/100 py, 95% CI 5.3–9.1). The lowest in incidence rate was seen in Hamburg (5.0/100 py, 95% CI 2.9–8.7). The incidence rate decreased only slightly over time (Fig. 2).

<table>
<thead>
<tr>
<th>Centre</th>
<th>Incidence reinfections/100 py (95% CI)</th>
<th>Number of reinfections</th>
<th>Person years follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duesseldorf (n = 59)</td>
<td>8.1 (4.8–14.3)</td>
<td>12</td>
<td>148</td>
</tr>
<tr>
<td>Hamburg (n = 73)</td>
<td>5.0 (2.9–8.7)</td>
<td>13</td>
<td>258</td>
</tr>
<tr>
<td>Berlin (n = 95)</td>
<td>8.2 (5.6–12.1)</td>
<td>26</td>
<td>316</td>
</tr>
<tr>
<td>Bonn (n = 11)</td>
<td>4.8 (0.7–33.7)</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>London-Cheleswest (n = 190)</td>
<td>7.0 (5.3–9.1)</td>
<td>52</td>
<td>746</td>
</tr>
<tr>
<td>London-Royal Free (n = 69)</td>
<td>5.7 (3.7–8.7)</td>
<td>21</td>
<td>369</td>
</tr>
<tr>
<td>Paris (n = 27)</td>
<td>21.8 (11.3–41.8)</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>Vienna (n = 28)</td>
<td>16.8 (8.7–32.3)</td>
<td>9</td>
<td>54</td>
</tr>
</tbody>
</table>
Spontaneous clearance rates

Twenty-one of 135 patients (15.6%) spontaneously cleared their first reinfection and 7 of 22 patients (28.6%) spontaneously cleared their second reinfection ($p = 0.43$ for increase in spontaneous clearance proportion).

Men who spontaneously cleared their incident infection were less likely to present with a subsequent reinfection episode than men who had achieved SVR to their incident infection (OR 0.52, 95% CI 0.29–0.91, $p = 0.02$). In multivariable analysis, spontaneous clearance of the first HCV infection (OR = 7.47, 95% CI 1.9–29.2, $p = 0.004$) and a maximum ALT level above 1000 IU/ml (OR = 13.9, 95% CI 4.3–45.4, $p <0.001$) were associated with spontaneous clearance of the reinfection [26].

Discussion

This is the largest cohort of HIV infected MSM patients, who were followed-up longitudinally for HCV reinfections after initial HCV cure. We found a high reinfection incidence of 7.3/100 py, with an estimate that almost one third of patients were reinfected after 5 years. These numbers highlight the failure of current prevention strategies and the need for specific measures in the HIV infected MSM population in Europe. With a high treatment uptake in this population even in the interferon era and with higher response rates to treatment in the acute phase of infection [27], reinfections are most likely occurring due to maintained risk behaviors. As new, well tolerated, but costly HCV treatments have become the standard of care for HCV therapy, there is an urgent need to develop strategies to prevent reinfection at such a scale. It is essential to expand testing opportunities to identify at the earliest opportunity men in the early stages of infection to prevent onward transmission of infection through treatment and behavioral interventions. The men included in this study were all linked to care centers, where if retained in care they are closely monitored and frequently tested for HCV reinfection using HCV RNA. Rapid access to effective treatment in conjunction with interventions to reduce high risk behaviors are then required.

The mode of transmission is not entirely understood in this population, but seems to occur in the setting of HIV infection, potential traumatic sexual practices with increased risk of blood-blood contact, and increasing recreational drug use including intravenous administration, commonly referred to as “Chemsex” [28]. “Chemsex” is defined as the use of sexually disinhibiting recreational drugs to facilitate sexual sessions lasting often several days with multiple sexual partners and which put men at high risk of infection with HCV and other sexually transmitted infections [29]. Our patients had a median age of 41 years at their first reinfection and well-controlled HIV infection, indicating that they were aware and compliant to health interventions, but potentially also driving their willingness for unprotected and/or chemically enhanced sex. The dramatic incidence rate observed here confirms on a European level what has previously been reported [19,20,22] on a regional level.

Studies in PWID, which are all much smaller than the number of included individuals in this study, have shown HCV reinfection incidence rates between 0.8 and 4.7 per 100 py [30]. In a meta-analysis performed by Aspinall et al. the pooled reinfection incidence in those reporting intravenous drug use after HCV cure was 6.44 (95% CI, 2.49–16.69) per 100 py [31]. Hill et al. reported a five-year risk for HCV reinfection of 10.6% in PWID while it was over 15% in MSM [21]. These findings underline the need for risk-adapted interventions during follow-up post HCV cure. HIV-positive MSM with a history of HCV infection and especially those presenting with an HCV reinfection require close monitoring and behavioral interventions to reduce the risk of reinfection.

We observed large regional differences in reinfection incidence within our dataset, with the highest being in Paris (21.8/100 py) and the lowest being in Hamburg (5.04/100 py). These differences may reflect the lack of precision in the incidence estimates from the smaller centers due to lower numbers of men included in the dataset and the shortest follow-up time, or it may represent specific risk behavior patterns in men seen in the different centers, rather than absolute differences in incidences in the regions.

The reinfection incidence rates increased from the first reinfection (7.3/100 py, 95% CI 6.2–8.6) to the second reinfection (18.8/100 py, 95% CI 12.9–27.5, $p <0.001$). This indicates a maintained risk behavior in a potentially specific high risk group, who require urgent targeting for prevention measures related to risk behaviors. How often these individuals require testing for HCV infection de novo is unclear but the present suggestion that this occurs annually does not appear sufficient, and we suggest HCV RNA testing every three to six months after an incident HCV infection and every three months in patients that had been reinfected.

We found a spontaneous HCV clearance rate of 15.6% at the first reinfection episode consistent with findings from others in HIV–HCV coinfected populations [26]. However, at second reinfection the spontaneous clearance rate showed a non-significant increase to 28.6%.

Individuals who had spontaneously cleared their initial infection were more likely to spontaneously clear ($p = 0.004$) their reinfection, and there was also a trend for lower reinfection incidence for people who had spontaneously cleared their initial infection compared to those that were treated (HR 0.62, 95% CI 0.38–1.02, $p = 0.06$). These findings would suggest the development of a degree of HCV-specific immunity with repeated exposure, which has been previously demonstrated in humans and chimpanzees [24,25]. The absence of this observation in the setting of PWID may be explained by the type or frequency of HCV exposure, or the testing interval [32].

Several mechanisms of the host’s immune response have been associated with spontaneous HCV clearance, including interferon-mediated natural killer cell response [33], a broad multi-specific CD4 T cell response [34], neutralizing antibodies [35], and the presence of specific HLA epitopes [36].

The ability to clear an acute HCV infection spontaneously is reduced in HIV infected patients probably due to a compromised immune response. Factors such as female sex [37], coinfection with hepatitis B virus, a favorable IL28B genotype [38], and a higher CD4 cell count have been associated with clearance in clinical cohorts, as well as higher ALT levels, higher bilirubin levels, a faster decline in HCV viral load [26], and a less diverse viral quasispecies [39]. Likewise, in this study, ALT levels above 1000 IU/ml were associated with spontaneous clearance as it has been described by other groups [26]. These observations potentially reflect a stronger and more directed immune response in those reporting intravenous drug use after HCV cure.
Research Article

response against HCV in those who clear spontaneously. It remains however unclear why we observed spontaneous clearance in those with their first reinfection that did not clear the succeeding infection.

This study has a number of limitations. First of all, the retrospective nature of the study limits the conclusions that may be drawn from the analysis. In addition, detailed patient information was only available for men that acquired reinfection, limiting the analysis of risk. We may have underestimated the number of reinfections as those that cleared their infection within testing intervals may have been missed. On the other hand, a false positive HCV RNA assay may have led to overestimation of cases. The HCV RNA PCR testing interval was not standardized across centers and depended largely on the treating physician or national guidelines. But we believe that reasonable HCV RNA PCR testing would have been performed as all our patients were HIV-seropositive MSM with a high grade of linkage-to-care and regular medical visits at experienced sexually transmitted disease centers/HIV outpatient clinics, usually every three months. Some datasets were incomplete leading to exclusion from detailed analysis. In addition, the majority of centers did not routinely test for IL28B genotype substantially limiting the analysis of this factor for risk of reinfection and spontaneous clearance.

Our study lacks detailed behavioral information, notably on injection drug use in this population, which hampers conclusions on prevention efforts.

Phylogenetic analysis was not performed in our cohort, and nearly half were reinfected with the same HCV subtype. Others have described a prolonged fluctuating viraemia that may be confounded with a new HCV infection [18]. However, our patients were nearly exclusively diagnosed as acute HCV infection and the median ALT levels at reinfection were 302 and 268 IU/ml at the first and second reinfection, which makes chronic infection less likely. As we included treated patients and did not perform next-generation sequencing, we can not rule out the re-emergence of a resistant minority variant as has been previously postulated [40]. However, the high treatment response rates and high spontaneous clearance rates in our patients’ succeeding episodes make this hypothesis unlikely.

Conclusions

HCV reinfection is a critical health concern among HIV infected MSM and frequently occurs after successful treatment or spontaneous clearance of acute HCV infection. Prevention strategies – both treatment and behavioral – are needed to target high risk groups to reduce morbidity and treatment costs. Patients as well as clinicians have to be aware of the specific risk behavior in this setting and counseling should be accompanied by behavioral interventions to avoid reinfections.

HIV-positive MSM with a prior HCV infection should be regularly tested for reinfection. The increase in spontaneous clearance rates observed in our cohort indicates a possible increase of HCV-specific responses with repeated infection.

Financial support

No financial support was obtained for this article.

Conflict of interest

The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Authors’ contribution

PI, TCM, MN, and JKR designed the study. PI and TCM drafted the manuscript. TCM performed the data analysis. AR, HJS, SM, CB, MM, JB, AB, SB, KL included patients. All authors discussed and approved the final manuscript.

Acknowledgements

NEAT is a project funded by the European Union under the 6th Framework programme, contract acronym: NEAT, number: LSHP-CT-2006-037570.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jhep.2016.09.004.

References

Authors names in bold designate shared co-first authorship

[4] Boesecke C, Grint D, Soriano V, Lundgren JD, d’Arminio Monforte A, Mitsura M, et al. Hepatitis C virus infections among MSM attending sexually transmitted disease centers/HIV outpatient clinics, usually every three months. Some datasets were incomplete leading to exclusion from detailed analysis. In addition, the majority of centers did not routinely test for IL28B genotype substantially limiting the analysis of this factor for risk of reinfection and spontaneous clearance.

No financial support was obtained for this article.