Abstract # PS-027

Preclinical antiviral drug combination studies utilizing novel orally bioavailable agents for chronic hepatitis B infection: AB-506, a next generation HBV capsid inhibitor, and AB-452, an HBV RNA destabilizer

Rene Rijnbrand
Arbutus Biopharma Inc.
The International Liver Congress 2018,
April 11 – 15, 2018, Paris, France
Key to Therapeutic Success in HBV

- REDUCE/SUPPRESS VIRAL DNA & ANTIGENS
 - Viral Replication
 - Viral Proteins/HBsAg
 - cccDNA Formation /Function

- RE-AWAKEN/BOOST IMMUNE RESPONSE
 - Reduced HBsAg
 - Immunotherapy

A combination approach to these key factors will drive cures
HBV Lifecycle

Keys to therapeutic success: combining agents with different mechanism of action
HBV Lifecycle

Keys to therapeutic success: combining agents with different MOA
AB-506: A Next Gen HBV Capsid Inhibitor

Potent inhibitor of HBV replication *in vitro*

- Potent inhibition of viral replication in HBV cell culture models ($EC_{50} = 35-80$ nM, $EC_{90} = 200-275$ nM; PHH EC_{50} of 32 nM)
 - Binds at the dimer:dimer interface of core protein
 - Forms capsids devoid of pgRNA
 - Inhibits formation of rcDNA
 - Pan-genotypic activity (HBV genotypes A-H)
 - No cross-resistance with NucR variants
 - High degree of antiviral selectivity for HBV
 - Modest ~6 fold increase in EC_{50} in 40% human serum

- Dose Dependent Reduction in serum HBV DNA in an HDI mouse model of HBV
 - Preclinical data supports potential for QD dosing
 - AB-506 is being advanced into clinical development (mid 2018)
AB-452: A Potent HBV RNA Destabilizer

Novel small molecule HBV RNA Destabilizer

- AB-452 is a potent, highly selective small molecule inhibitor of HBV replication through destabilization of HBV RNA (EC\textsubscript{50} 1.5 nM)

- **In vitro** AB-452 showed:
 - Drop in viral RNA levels
 - Drop in viral s/e/c Ag levels
 - Pan-genotypic activity
 - No cross-resistance with NucR variants
 - Highly degree of antiviral selectivity for HBV

- AB-452 significantly inhibited HBV replication and reduced viral RNA and antigens in an immunocompetent AAV mouse model

- AB-452 is being evaluated for advancement into clinical development

Inhibits HBsAg expression in HepG2.2.15 cells with an EC\textsubscript{50} of 1.5 nM

BID PO dosing resulted in up to 1.4 log\textsubscript{10} serum HBsAg reduction. Correlated with liver HBV RNA levels.
ARB-1467
A LNP siRNA agent targeting all HBV transcripts

• Novel RNA interference product
• Unique 3-trigger design inhibits HBV replication, reduces all HBV transcripts, and lowers all HBV antigens
• Delivered via proprietary lipid nanoparticle (LNP) technology
• Generally safe and well tolerated to date
• Currently in Phase 2 trials
Combination of AB-506 and AB-452 With NAs and LNP siRNA (ARB-1467)

Molecules are mechanistically compatible
In Vitro Combination Studies: Summary

Molecules are mechanistically compatible

<table>
<thead>
<tr>
<th>HBV Inhibitor</th>
<th>ETV</th>
<th>TDF</th>
<th>TAF</th>
<th>ARB-1467</th>
<th>AB-506</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-506 Next Gen Capsid Inhibitor*</td>
<td>Additive</td>
<td>Additive</td>
<td>Moderate Synergy</td>
<td>Additive</td>
<td>NA</td>
</tr>
<tr>
<td>AB-452 HBV RNA Destabilizer**</td>
<td>sAg</td>
<td>ND</td>
<td>ND</td>
<td>Minor Synergy</td>
<td>ND</td>
</tr>
<tr>
<td>HBV DNA</td>
<td>Moderate Synergy</td>
<td>Additive</td>
<td>Additive</td>
<td>ND</td>
<td>Additive</td>
</tr>
</tbody>
</table>

- *HepDE19 HBV cell culture model with rcDNA quantitation
- **HepG2.2.15 HBV cell culture model with HBV DNA and HBsAg quantitation
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF

HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 log_{10} reductions in serum HBV DNA vs the vehicle control, respectively.
- Triple combination effected larger serum HBV DNA reduction of 2.8 log_{10} vs the vehicle control.
- As expected, serum HBsAg reductions observed only in AB-452 groups.
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF

HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 \log_{10} reductions in serum HBV DNA vs the vehicle control, respectively.
- Triple combination effected larger serum HBV DNA reduction of 2.8 \log_{10} vs the vehicle control.
- As expected, serum HBsAg reductions observed only in AB-452 groups.

Once-Daily Oral Dose × 7 Days
Mean (n=7-8) ± SEM
Open symbol indicates close to LLOQ.

![Graph showing serum HBV DNA reduction](image-url)
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF
HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

• Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 log₁₀ reductions in serum HBV DNA vs the vehicle control, respectively

• Triple combination effected larger serum HBV DNA reduction of 2.8 log₁₀ vs the vehicle control

• As expected, serum HBsAg reductions observed only in AB-452 groups
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF

HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 log₁₀ reductions in serum HBV DNA vs the vehicle control, respectively.
- Triple combination effected larger serum HBV DNA reduction of 2.8 log₁₀ vs the vehicle control.
- As expected, serum HBsAg reductions observed only in AB-452 groups.
In vivo Dual and Triple Combination of AB-506, AB-452 and TDF

HDI Mouse Model of HBV: Liver HBV DNA and HBsAg Reductions

- Liver HBV DNA reductions reflect serum HBV DNA reductions
- AB-506 showed greater effect on liver HBV DNA reduction than TDF
- Only AB-452 containing groups showed liver HBsAg reductions
Summary

• Key to therapeutic success will involve combination of different MoA agents
 • Reduce/Suppress Viral DNA and Antigens
 • Reawaken/Boost host immune responses

• Agents with novel MoA undergoing clinical evaluation; more in preclinical stages
 • eg: Capsid Inhibitors, HBV RNA Destabilizers, RNAi Agents, NA, others

• *In vitro* and *in vivo* antiviral evaluations of Capsid Inhibitor AB-506, RNA Destabilizer AB-452, LNP siRNA ARB-1467 and NA agents show favorable additive to synergistic effects in combination
Acknowledgments

Arbutus Team

<table>
<thead>
<tr>
<th>Nagraj Mani</th>
<th>Dimitar Gotchev</th>
<th>Chris Pasetka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice H.L. Li</td>
<td>Troy O. Harasym</td>
<td>Jorge Quintero</td>
</tr>
<tr>
<td>Andrzej Ardzinski</td>
<td>Agnes Jarosz</td>
<td>Rene Rijnbrand</td>
</tr>
<tr>
<td>Laurèn Bailey</td>
<td>Salam Kadhim</td>
<td>Alexander Shapiro</td>
</tr>
<tr>
<td>Janet R. Phelps</td>
<td>Andrew Kondratowicz</td>
<td>Holly M. Micolochick Steuer</td>
</tr>
<tr>
<td>Robbin Burns</td>
<td>Steven G. Kultgen</td>
<td>Kim Stever</td>
</tr>
<tr>
<td>Tim Chiu</td>
<td>Kaylyn Kwak</td>
<td>Sunny Tang</td>
</tr>
<tr>
<td>Andrew G. Cole</td>
<td>Amy C.H. Lee</td>
<td>Xiaowei Teng</td>
</tr>
<tr>
<td>Andrea Cuconati</td>
<td>Sara Majeski</td>
<td></td>
</tr>
<tr>
<td>Bruce D. Dorsey</td>
<td>Kevin McClintock</td>
<td></td>
</tr>
<tr>
<td>Ellen Evangelista</td>
<td>Joanna Pan</td>
<td></td>
</tr>
</tbody>
</table>

Arbutus BIOPHARMA