PER ACT HIV TRANSMISSION RISK THROUGH ANAL INTERCOURSE: AN UPDATED SYSTEMATIC REVIEW AND META-ANALYSIS

Rebecca F. Baggaley,1 Branwen N. Owen,3 Romain Silhol,1 Jocelyn Elmes,2,3 Peter Anton,3 Ian McGowan,4 Ariane van der Straten,5 Que Dang,6 Edith M. Swann,6 Barbara Shacklett1,8, Marie-Claude Boily,1

1Department of Infectious Disease Epidemiology, Imperial College London, UK; 2Department of Global Health and Development, London School of Hygiene & Tropical Medicine, UK; 3Department of Medicine, UCLA Center for HIV Prevention Research, David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Los Angeles, US; 4University of Pittsburgh School of Medicine, Pittsburgh, US; 5Women’s Global Health Imperative, RTI International, San Francisco, US; 6Vaccine Research Program, Division of AIDS, National Institutes of Health, Bethesda, US; 7Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, US; 8Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California Davis, Sacramento, US.

BACKGROUND

• Anal intercourse (AI) drives HIV epidemics in men-who-have-sex-with-men (MSM) and numerous studies have reported common AI practice in heterosexual populations,2,3 potentially making it an important source of HIV transmission for this group.

• Quantifying HIV transmission risk per act of anal intercourse (AI) is important for effective targeting of safe sex messages, for developing and implementing HIV prevention technologies and to inform mathematical models.

OBJECTIVES

To update previous reviews1,8 (of studies published up to February 2012) of HIV transmission risk through AI, and to explore how this risk varies by gender, setting and other study characteristics.

METHODS

• We searched Medline and Embase to February 2018 for new studies reporting HIV transmission risk per AI sex act.

• We pooled study estimates of per act risk through receptive AI (URAI) and insertive AI (UIAI) both unprotected by condoms, using random effects models.

• We conducted subgroup analyses by gender (heterosexual, MSM), study design and whether antiretroviral therapy (ART) had been introduced by the time of the study.

RESULTS

• We reviewed 5336 titles. Two new relevant studies were included (see Figure).

• The revised pooled HIV risk was higher for URAI (1.25%, 95%CI 0.55-2.23, N=5, I²=87%) than for UIAI (0.17%, 95%CI 0.09-0.26, N=3, I²=0%).

• The sole heterosexual URAI estimate8 (3.38%, 95%CI 1.85-4.91), from a study of 72 women published in a peer-reviewed journal, was significantly higher than the MSM pooled URAI estimate (0.75%, 95%CI 0.56-0.98, N=4, p<0.0001) and higher than the only other heterosexual estimate identified (0.4%, 95%CI 0.08-2.0%, based on 59 women, excluded for being a pre-2013 abstract) (see Figure).

• Pooled per-act URAI risk varied by study design (retrospective-partner studies: 2.56%, 95%CI 1.20-4.42, N=2: one MSM, one heterosexual; prospective studies of individuals: 0.71, 95%CI 0.51-0.93, N=3: all MSM, p<0.0001).

• URAI HIV risk was lower for studies conducted in the ART era (0.75%, 95%CI 0.52-1.03%) than pre-ART (1.67%, 95%CI 0.44-3.67%) but not significantly so (p=0.537). Only study design was independently associated with URAI transmission risk (p<0.055).

FIGURE Forest plot of studies estimating per-act HIV transmission probability through anal intercourse. “Original estimates” refers to studies included in either previous review.1,8 1% lies between 0% and 100%; 0% indicates zero observed heterogeneity and larger values show increasing heterogeneity.

CONCLUSION

• Risk of HIV transmission through AI remains high (1.25%, 95%CI 0.55-2.23% for URAI; 0.17%, 95%CI 0.09-0.26% for UIAI). HIV is at least 10-fold more transmissible through anal than vaginal sex in high income settings (unprotected receptive VI: 0.08%, 95%CI 0.06-0.11%)14.

• Transmissibility appears to have remained high despite ART use having increased in the HIV-infected population.

• Prevention messages should emphasise this high risk.

• Further studies, particularly among heterosexual populations and in resource-limited settings, are required to elucidate whether AI risk differs by gender, region and following ART scale-up at the population level.

REFERENCES


