

- Logistic regression model was used to predict decompensation.

MR Elastography Based Fibrosis Correlates with Clinical Liver Events in Patients with Nonalcoholic Fatty Liver Disease (NAFLD): A Multi-center Study

Zeid Kayali⁷, Edward Mena⁸, Naim Alkhouri⁵, Mazen Noureddin⁹ ¹Cedars-Sinai Medical Center, Division of Digestive and Liver Diseases, Los Angeles, United States; ³Cedars-Sinai Medical Center, Imaging, Los Angeles, United States; ³Cedars-Sinai Medical Center, Imaging, Los Angeles, United States; ⁴University of Nevada, Internal Medicine, Las Vegas, United States; ⁵Texas Liver, San Antonio, United States; ⁶UT Health, Liver, San Antonio, United States; ⁷Inland Empire Liver Foundation, Riverside, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angeles, United States; ⁹Cedars-Sinai Medical Center, Fatty Liver Program, Division of Digestive and Liver Diseases, Los Angele

RESULTS

	N = 245	
(Female)	131.0 (53.5%)	
	56.0 (46-65)	
panic	164.0 (66.9%)	
C	75.0 (30.6%)	
/Missing	6.0 (2.5%)	
	208.0 (84.9%)	
	8.0 (3.3%)	
	12.0 (4.9%)	
	16.0 (6.5%)	
d/Unknown	1.0 (0.4%)	
	114.0 (47.0%)	
	118.0 (48.0%)	
mia	143.0 (59.8%)	
	30.0 (12.3%)	
n (IQR) kg/m ²	32.0 (28.1-35.7)	
dian (IQR) %	6.0 (5.6-6.9)	
n (IQR) U/L	43.0 (26.0-67.0)	
n (IQR) U/L	32.0 (23.0-49.0)	
ledian (IQR) U/L	78.0 (62.0-98.0)	
edian (IQR) g/dl	4.4 (4.2-4.6)	
edian (IQR) mg/dl	0.6 (0.4-0.7)	
PLT) Median (IQR)	229.5 (184.8-283.0)	

100%

4.395(kPa)

88%

94.4%

Figure 2. MRE Threshold for Decompensated vs Compensated Cirrhosis

> **ROC- compensated cirrhosis vs** decompensated cirrhosis

Table 3. Associations between different clinical liver events and MRE liver stiffness

80.0%

75.0%

70.0%

6.48

Clinical Liver Events	Median (kPa)	p value
	7.40	
Ascites-Yes	(4.85-10.15)	<0.001
Ascites-No	2.50 (2.10-3.28)	
Hepatic encephalopathy (HE)-Yes	9.50 (8.20-10.76)	<0.001
Hepatic encephalopathy (HE)-No	2.50 (2.10-3.28)	
Esophageal variceal bleed (EVB)-Yes	10.15 (9.28-11.12)	0.017
Esophageal variceal bleed (EVB)-No	2.50 (2.11-3.33)	
Deceased-Yes	10.15 (9.18011.12)	0.016
Deceased- No	2.50 (2.10-3.31)	

Ma Ai Thanda Han¹, Jonathan Grotts², Rola Saouaf³, Nabil Noureddin⁴, Walid Ayoub¹, Andrea Scott⁵, Mary Barbara⁶, Matthew Tjahja⁵, Toluwalase Okubote⁵,

Table 2. Clinical parameters in the 3 groups

Variable	Non cirrhosis	Compensated cirrhosis	Decompensa ted cirrhosis	p valu
(female)%	80.31%	6 11%	1 58%	0 12
	<u> </u>	70.00%	60.00%	0.42
Hyperlipidemi a %	89.51%	6.29%	4.20%	0.68
Liver stiffness	2.43	5.37	7.80	~0.00
	(2.10-3.00)	(4.90-0.11)	(5.60-10.44)	<0.00
Age	(45.60-6.5.00)	(52.00-62.00)	(53.00-71.50)	0.24
BMI (IQR) kg/m2	31.90 (28.00-35.50)	35.18 (32.00-40.50)	29.89 (28.20-34.40)	0.01
TG (mg/dl)	142.50 (113.50-229.5 0)	67.00 (142.00-201.50)	113.00 (106.00-201.5 0)	0.58
HDL (ma/dl)	45.00 (38.00-53.00)	38.00 (31.50-48.00)	58.00 (56.00-62.00)	0.02
TC (mg/dl)	182.00 (153.00-211.0 0)	165.00 (145.50-200.00)	207.00 (137.00-231.5 0)	0.41
HDL (mg/dl)	45.00 (38.00-53.00)	38.00 (31.50-48.00)	58.00 (56.00-62.00)	0.02
LDL (mg/dl)	102.00 (77.00-129.00)	103.00 (84.50-139.50)	122.00 (91.00-125.50) 43.00	0.85
ALT	43.00	42.00	(34.50-127.50	
(U/L) AST (U/L) Alk Phos	(25.00-65.30) 31.00 (23.00-45.50) 77.50	(29.50-68.00) 34.00 (28.80-54.50) 71.50) 66.5 (41.30-116.80) 128.50 (95.30-163.20	0.65 0.00
(U/I)	(62,00-96,80)	(60 80-91 80))	0 00
Albumin	4.50	4.40	4.10	
(g/dI)	(4.30-4.60)	(4.10-4.50)	(3.80-4.20)	0.00
T bili	0.50	0.65	0.65	
(mg/dl)	(0.40-0.70)	(0.50-1.10)	(0.451.10)	0.05
Platelets (IQR) (1000/ mm3)	240.50 (195.50-288.2 0)	146.00 (126.50-185.50)	154.50 (99.80-215.50)	<0.00
HbA1C	5.90	6.40	6.30	
(IQR) %	(5.60-6.80)	(5.90-7.00)	(6.20-7.40)	0.38

Table 4. Logistic model for Cirrhosis with Decompensation

	I	1		1
Predictor	OR	lower	upper	p value
Liver				
Stiffness(kPa)	3.09	1.84	5.20	<0.001

CONCLUSIONS

- This novel study demonstrated that in NAFLD patients higher liver stiffness as measured by MRE cut off \geq 6.48 kPa was associated with overall decompensation and mortality in a large multicenter cohort.
- Our study identified different MRE cut-offs associated with individual clinical liver events.
- These MRE cut-offs could allow physicians to identify NAFLD patients at higher risk of liver related complications and eventually death.
- Further long-term prospective studies are warranted to confirm our results

REFERENCES

- Ekstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015;61:1547-54
- Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, et al. Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients With Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. Gastroenterology 2018;155:443-457 e17
- Park CC, Nguyen P, Hernandez C, et al. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017;152:598-607 e2.

Mazen Noureddin (mazen.noureddin@cshs.org)