Virologic efficacy of raltegravir vs. efavirenz based antiretroviral treatment in HIV1-infected adults with tuberculosis

W48 results of the ANRS 12300 Reflate TB2 trial

N. De Castro¹, O. Marcy², C. Chazallon², E. Messou³, S. Eholie⁴, N. Bhatt⁵, C. Khosa⁵, D. Laureillard⁶, G. Do Chau⁷, V. Veloso⁸, C. Delaugerre¹,⁹, X. Anglaret², JM. Molina¹,⁹, B. Grinsztejn⁸

for the ANRS 12300 Reflate TB2 study group

¹ AP-HP-Hôpital Saint-Louis, Paris, France, ²University of Bordeaux, Bordeaux Population Health Centre Inserm U1219, Bordeaux, France, ³CEPREF, Abidjan, Cote D'Ivoire, ⁴SMIT, Abidjan, Cote D'Ivoire, ⁵Instituto Nacional de Saúde, Maracuene, Mozambique, ⁶CHU de Nîmes, Nîmes, France, ⁷Pham Ngoc Thach Hospital, Ho Chi Minh City, Vietnam, ⁸Laboratory of Clinical Research on STD/AIDS, IPEC, Fiocruz, Rio de Janeiro, Brazil, ⁹Université de Paris
Disclosures

- Grant research from Gilead not related to the present study (Voice program 2015)
Alternatives to efavirenz in HIV/TB co-infection

• Alternatives to Efavirenz (EFV)-based regimens are needed for patients co-infected with HIV and tuberculosis (HIV/TB): CNS tolerance and drug resistance to NNRTIs

• Integrase inhibitors (INSTIs) have been assessed as alternatives

• Dolutegravir (DTG) and raltegravir (RAL) PK show interaction with rifampin (RIF) is compensated when double dose of INSTI is used

• INSPIRING study: phase 3b non comparative, randomized, open-label trial evaluating DTG 50mg bid vs EFV 600mg qd

Dooley KE et al. CID 2019
What is the appropriate dose of raltegravir?

- **Phase II: ANRS 12180 REFLATE TB**
 Evaluate efficacy and safety of RAL 400 mg bid, RAL 800 mg bid, or EFV 600 mg qd in TB/HIV patients on RIF containing TB treatment

- **Choice of the RAL dose: 400mg bid vs. 800mg bid**
 - Similar proportion of patients with HIV RNA<50 copies/mL at W48
 - Drug-drug interaction (DDI) lower than that observed in healthy volunteers
 - Better tolerance profile: 2 patients experienced grade 3-4 hepatotoxicity in the RAL 800 mg bid
 - Pill burden and cost

% pts with HIV RNA<50 copies/mL at W48

<table>
<thead>
<tr>
<th></th>
<th>EFV 600 mg qd</th>
<th>RAL 400 mg bid</th>
<th>RAL 800 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>67%</td>
<td>76%</td>
<td>63%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparison of Plasma Raltegravir Pharmacokinetics Following Administration of Raltegravir 400 mg Twice Daily (Arm 1). With and Without Rifampicin

![Graph and Table]

Grinsztejn et al. Lancet HIV 2014
Taburet et al. CID 2015

De Castro et al. 10th IAS conference. Mexico. Slides MOAB0101
Study design

Phase III open label randomized non-inferiority multicenter trial
Brazil, Côte d’Ivoire, France, Mozambique, Vietnam
230 patients/arm (80% power, non-inf. margin -12%, one-sided α=2.5%)

Inclusion criteria
- HIV1 infection
- ART naïve
- Confirmed or probable TB
- Standard TB Tx ≤8 weeks

Exclusion criteria
- HIV2 infection
- TB meningitis
- ALT >5ULN, Hb <6.5g/dL, Creat cl. <60mL/min
- Pregnancy/breastfeeding

Primary endpoint
FDA snapshot
HIV-1 RNA < 50 copies/mL

TB Treatment RHZE2/RH4

TDF/3TC qd + EFV 600 mg qd
TDF/3TC qd + RAL 400 mg bid

1:1*

Screening (W-2) W0 W24 W48

*Stratification by country

De Castro et al. 10th IAS conference. Mexico. Slides MOAB0101
Study flow chart

- **Screened**: 625
 - **Not eligible**: 162
 - **Eligible but not randomized**: 3
 - 1 Death before randomisation
 - 1 Withdrawal
 - 1 Creat. clear. <60 ml/min
- **Randomized**: 460
 - **EFV arm**: 230
 - **ITT set**: 227
 - Study completed: 203 (88%)
 - Early termination of study: 27 (12%)
 - Death: 14 (6%)
 - LFU: 10 (4%)
 - Withdrawal: 1 (0%)
 - Transfer out: 2 (1%)
 - **RAL arm**: 230
 - **ITT set**: 228
 - Study completed: 201 (87%)
 - Early termination of study: 29 (13%)
 - Death: 12 (5%)
 - LFU: 10 (4%)
 - Withdrawal: 1 (0%)
 - Transfer out: 6 (3%)
Baseline characteristics (1)

<table>
<thead>
<tr>
<th></th>
<th>EFV arm (n=227)</th>
<th>RAL arm (n=228)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>37 (30 - 43)</td>
<td>34 (28 - 42)</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>19.1 (17.5 - 20.8)</td>
<td>19.1 (17.6 - 21.2)</td>
</tr>
<tr>
<td>Gender female</td>
<td>90 (40%)</td>
<td>90 (39%)</td>
</tr>
<tr>
<td>CD4 (cells/mm³)</td>
<td>108 (35 - 238)</td>
<td>98 (39 - 242)</td>
</tr>
<tr>
<td>CD4 < 50/mm³</td>
<td>77 (34%)</td>
<td>75 (33%)</td>
</tr>
<tr>
<td>HIV RNA (Log10 copies/mL)</td>
<td>5.5 (5.0 - 5.9)</td>
<td>5.5 (5.0 - 5.8)</td>
</tr>
<tr>
<td>HIV RNA ≥100,000 copies/mL</td>
<td>164 (72%)</td>
<td>172 (75%)</td>
</tr>
<tr>
<td>Time on TB treatment at enrolment</td>
<td>20 (15 - 27)</td>
<td>20 (15 - 28)</td>
</tr>
<tr>
<td>Cotrimoxazole prophylaxis</td>
<td>201 (89%)</td>
<td>199 (87%)</td>
</tr>
<tr>
<td>ALT (UI/L)</td>
<td>23 (15 - 37)</td>
<td>24 (15 - 39)</td>
</tr>
<tr>
<td>Creatinine clearance (mL/min)</td>
<td>98 (77 - 118)</td>
<td>103 (85 - 132)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>9.9 (8.2 - 11.4)</td>
<td>9.8 (8.7 - 11.2)</td>
</tr>
<tr>
<td>HBs Ag positive</td>
<td>21 (9%)</td>
<td>24 (11%)</td>
</tr>
<tr>
<td>HCV Ab positive</td>
<td>7 (3%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>
Baseline characteristics (2)

Data are n(%) or median (IQR)

<table>
<thead>
<tr>
<th></th>
<th>EFV arm (n=227)</th>
<th>RAL arm (n=228)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous tuberculosis disease treated</td>
<td>3 (1%)</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>Time on TB Tx at enrolment</td>
<td>20 (15 – 27)</td>
<td>20 (15 – 28)</td>
</tr>
<tr>
<td>Tuberculosis site of disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>159 (70%)</td>
<td>152 (67%)</td>
</tr>
<tr>
<td>Extra-pulmonary</td>
<td>43 (19%)</td>
<td>44 (19%)</td>
</tr>
<tr>
<td>Pulmonary + extra-pulmonary</td>
<td>25 (11%)</td>
<td>32 (14%)</td>
</tr>
<tr>
<td>Bacteriological confirmation</td>
<td>159 (70%)</td>
<td>149 (65%)</td>
</tr>
<tr>
<td>Smear positive</td>
<td>113 (50%)</td>
<td>93 (41%)</td>
</tr>
<tr>
<td>Xpert MTB positive</td>
<td>132 (58%)</td>
<td>132 (58%)</td>
</tr>
<tr>
<td>MTB culture positive</td>
<td>114 (50%)</td>
<td>112 (49%)</td>
</tr>
<tr>
<td>Probable tuberculosis</td>
<td>66 (29%)</td>
<td>76 (33%)</td>
</tr>
<tr>
<td>LAM positive</td>
<td>18 (8%)</td>
<td>15 (7%)</td>
</tr>
<tr>
<td>Bacteriological confirmations or LAM+</td>
<td>177 (78%)</td>
<td>164 (72%)</td>
</tr>
<tr>
<td>No bacteriological data</td>
<td>2 (1%)</td>
<td>3 (1%)</td>
</tr>
</tbody>
</table>
Efficacy outcome – W48

Primary endpoint ITT:
HIV RNA<50 copies/mL at W48 (FDA snapshot)

- Treatment Difference (95% CI): RAL - EFV
 - RAL arm
 - EFV arm

Virologic success (HIV-1 RNA<50 c/mL)
- EFV arm (n=227)
- RAL arm (n=228)

Virologic failure
- HIV-1 RNA ≥ 50 copies per mL in the window
- Discontinued Due to Lack of Efficacy
- Discontinued Due to Other Reasons and Last HIV-1 RNA ≥ 50 c/mL

No data in the W48 window
- Discontinued study/study drug due to AE or death*
- Discontinued study/study drug for other reasons
- On study but missing data in window
Efficacy outcome by baseline characteristics – W48

Primary endpoint ITT: HIV RNA<50 copies/mL at W48 (FDA snapshot)

Baseline HIV RNA levels

- HIV RNA<100,000 copies/mL
 - EFV 600 mg qd: 73%
 - RAL 400 mg bid: 75%
 - EFV 600 mg qd: 64%
 - RAL 400 mg bid: 58%

Baseline CD4

- CD4<50/mm3
 - EFV 600 mg qd: 58%
 - RAL 400 mg bid: 59%
 - EFV 600 mg qd: 69%
 - RAL 400 mg bid: 52%
 - EFV 600 mg qd: 71%
 - RAL 400 mg bid: 73%

Share your thoughts using #IAS2019
Find this presentation on www.ias2019.org
HIV RNA<50 copies/mL under allocated therapy - ITT

De Castro et al. 10th IAS conference. Mexico. Slides MOAB0101

EFV 57.3% (95% IC 50.8-63.7)
RAL 57.9% (95% IC 51.5-64.3)
Median CD4 counts gain - ITT
Adverse events through W48

<table>
<thead>
<tr>
<th></th>
<th>Efavirenz (N=230)</th>
<th>Raltegravir (N=229)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any AE, N AE, n patient (%)</td>
<td>1038</td>
<td>208 (90%)</td>
</tr>
<tr>
<td>Grade 3 or 4 AEs, N AE, n patient (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>57</td>
<td>41 (18%)</td>
</tr>
<tr>
<td>Grade 4</td>
<td>33</td>
<td>27 (12%)</td>
</tr>
<tr>
<td>Type of grade 3-4 AE, N AE, n patient (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug-related AE</td>
<td>26</td>
<td>22 (10%)</td>
</tr>
<tr>
<td>ART discontinuation due to drug-related AE</td>
<td>3</td>
<td>3 (<1%)</td>
</tr>
<tr>
<td>IRIS</td>
<td>13</td>
<td>13 (6%)</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>9</td>
<td>9 (4%)</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>1</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>4</td>
<td>4 (2%)</td>
</tr>
</tbody>
</table>
Conclusion

• This study is the first large phase III randomized trial comparing efavirenz to INSTI-based ART in the context of HIV-TB co-infection
• Despite promising virological and PK data from our previous phase II study we failed to demonstrate the non-inferiority of raltegravir 400 mg bid when compared to efavirenz 600mg qd at W48
• Risk factors for virological failure are being analyzed
• Based on these results, efavirenz should still be considered as the preferred first line therapy for HIV/TB co-infected patients
• Raltegravir 400 mg bid may represent an alternative in selected patients
The trial is sponsored and funded by ANRS
This trial is co-funded in Brazil by the Ministry of Health, Brazil.
This trial is supported and co-funded by Merck and Co.

Aknowledgements
Participants for their participation and their commitment
National TB and HIV programs from participating countries for their support
Scientific Committee and Independent Data Monitoring Committee members
ANRS team: C. Rekacewicz, M. de Solère, A. Montoyo
ANRS 12300 REFLATE TB 2 Study Group

<table>
<thead>
<tr>
<th>Brasil</th>
<th>Côte d’Ivoire</th>
<th>France</th>
<th>Mozambique</th>
<th>Vietnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Grinsztejn</td>
<td>E. Messou</td>
<td>N. de Castro</td>
<td>N. Bhatt</td>
<td>G. Do Chau</td>
</tr>
<tr>
<td>V. Veloso</td>
<td>S. Eholié</td>
<td>JM. Molina</td>
<td>C. Khosa</td>
<td>B. Nguyen</td>
</tr>
<tr>
<td>R. Escada</td>
<td>JB. Ntakpé</td>
<td>C. Delaugerre</td>
<td>I. Timana</td>
<td>D. Laureillard</td>
</tr>
<tr>
<td>S. Wagner</td>
<td>DA.Diomandé</td>
<td>O. Marcy</td>
<td>D. Nhumaio</td>
<td>D. Rapoud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. Anglaret</td>
<td></td>
<td>A. Domergue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Chazallon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>