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Key points 

This review and meta-analysis confirmed that duration of seroprotection conferred by most 

licensed vaccines was shorter in HIV-infected patients. Implications on the monitoring of 

antibody levels and timing of revaccination in these patients are therefore discussed. 
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Abstract 

Vaccine-induced antibodies may wane more quickly in persons living with HIV than in 

healthy individuals. Here, we reviewed the literature on vaccines routinely recommended in 

HIV-infected patients to estimate how seroprotection decreases over time in those who 

initially responded to immunization. For each study retrieved from the literature, the decrease 

of seroprotection was modeled with a log binomial generalized linear model, and data were 

pooled in a meta-analysis in order to provide estimates of seroprotection two and five years 

after last vaccine administration. Our analyses confirmed that duration of seroprotection was 

shorter in HIV-infected patients, and that with current guidelines, a substantial proportion of 

patients would have lost protective antibodies before being proposed a booster. We therefore 

discuss the implications on the monitoring of antibody levels and timing of revaccination in 

these patients. 
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Introduction 

Immune responses to most vaccines are known to be impaired in HIV patients [1,2].However, 

besides primary response, long-term persistence of protection has been poorly documented. 

As of today, recommendations on the timing of booster injections were based on data 

collected in healthy persons although antibody decay patterns may be different. In this 

respect, an important question is to estimate, among patients who initially responded to 

immunization, how seroprotection decreases over time. Here, we reviewed data on long-term 

persistence of antibody concentrations after vaccination in HIV-infected patients. This choice 

was supported by three main reasons: (i) antibody concentrations are reported in most vaccine 

trials, providing enough data to allow meta-analysis, (ii) correlates of protections have been 

defined for most vaccines and (iii) antibody levels can be routinely assessed for most antigens 

with standardized methods. For some vaccines (i.e. measles, varicella, yellow fever), cell-

mediated immunity is the critical determinant of protection, however methods of evaluation 

of cellular responses are not easily comparable between studies and correlates of protection 

not yet established. Our goal here was to provide a summary of available data to guide 

recommendations on revaccination in HIV-infected persons.  

Methods 

Search strategy and selection criteria 

We searched the MEDLINE database for English-language articles up to January 2013 using 

Pubmed, without date restriction, using the terms “vaccine”, “antibodies”, “follow-up” “long-

term”, “decline”, “duration”, and “HIV” (see search equation in the supplementary material). 

The review and meta-analysis were conducted according to the PRISMA guidelines. Studies 

were selected by one author (SK) according to the eligibility criteria: original experimental or 

observational studies on licensed vaccines in patients living with HIV, reporting 
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measurements of antibody titers beyond 6 months after the last vaccine dose administration. 

Reports on influenza vaccines were excluded. The reference lists of all relevant articles were 

examined for additional data sources.  

For each article, we abstracted the study design, vaccination scheme, sample size, follow-up 

duration and the percentage of ‘primary responders’ (patients who had mounted protective 

antibody titers after immunization) who remained seroprotected over time. Protective levels 

defining seroprotection were those reported by the authors and are detailed in Supplementary 

Information. Where relevant, the percentages of seroprotected patients were pooled in a meta-

analysis. The meta-analysis was restricted to prospective studies and to vaccine antigens 

where at least two studies were available. No meta-analysis was undertook for pneumococcal 

vaccines since the specific antibody levels necessary for adequate protection against 

pneumococcal disease are not clearly defined, even in healthy persons [3]. 

Data analysis 

To account for the great heterogeneity in follow-up times between the different studies, we 

first modelled for each study the decrease of seroprotection P(t), as a function of time since 

immunization, as P(t) = exp(- t), where  exp(-β) was the relative decrease in protection per 

additional time unit since immunization. Data were fit using log binomial generalized linear 

models. The predicted percentages of seroprotected individuals two and five years after 

immunization in each study were then pooled in a meta-analysis with random effects and 

presented in forest plots. All analyses were made using the R software version 2.13.2 (R 

Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, 

http://www.r-project.org). 

Results 

Of the 159 potentially relevant studies, 54 were selected for the qualitative review (figure 1). 
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For each vaccine, percentages of seroprotection retrieved from the literature are presented in 

figure 2. Median follow-up ranged from nine months to nine years after the last vaccine dose. 

The median number of patients included per study was 40 (Interquartile range: 18; 63). Data 

were available for 13 vaccine antigens: Streptococcus pneumoniae (n=14), hepatitis B (n=12), 

measles (n=12), hepatitis A (n=5), tetanus (n=8), yellow fever (n=3), Haemophilus influenzae 

type b (n=3), rubella (n=2), varicella, (n=1), pertussis (n=1), polio virus (n=1), mumps (n=1), 

and Japanese encephalitis (n=1). Of the 54 studies included in the review, 19 fitted the 

eligibility criteria for meta-analysis. Others were excluded because they were on 

pneumococcal vaccine (n=14), were retrospective (n=13), did not differentiate outcome of 

primary responders and non-responders during follow-up (n=4), or because only one study 

was available for the vaccine (n=4: pertussis [4], Haemophilus influenzae type b [5], varicella 

[6], and Japanese encephalitis [7]. 

Hepatitis B 

Twelve studies were included, with follow-up times ranging from 12 to 115 months [8–19]. 

As illustrated on figure 2A, seroprotection typically decreased over time: after 3 doses of 

40µg HBsAg , 71% of primary responders maintained protective antibody titers at year one 

[8], 33%-61% at year two [8,10], and 40% at year five [10]. There was no clear trend of 

longer persistence of seroprotection with high-dose vaccine schemes [8,10]. Three 

retrospective studies reported data beyond five years after immunization [11,15,19] in HIV-

infected children born to Ag HBs+ HIV-infected mothers, and  maintenance of seroprotection 

was particularly poor: 24% after 5.5 years [11], 45% after 8 years [15], to only 1% after 9.6 

years [19] after a three 10µg-doses scheme. 

According to the meta-analysis, less than one half of primary responders would maintain 

protective antibody titers two years after immunization (38% (CI95% = 23%; 54%) in adults 

and 61% (27%; 90%) in children), and only 17% (CI95%: 3%; 36%) after five years (figures 

3 and 4).Vaccine schemes with double-dosed schemes did not improve maintenance of 

 by Jules L
evin on January 23, 2014

http://cid.oxfordjournals.org/
D

ow
nloaded from

 

http://cid.oxfordjournals.org/
http://cid.oxfordjournals.org/


Ac
ce

pte
d M

an
us

cri
pt

6 

seroprotection (compared to those with standard doses of vaccine (respectively 41% (CI95% 

= 14%; 71%), and 50% (CI95% = 24%; 77%) after two years, P-value=0.65). 

Hepatitis A 

One retrospective [20] and four prospective studies [21–24] were identified on hepatitis A. In 

adults, a slight decrease was observed over time (figure 2B): 100% of responders were still 

seroprotected after one year [23], 90% after three years [21], and 85% after four years [22]. 

No data were reported beyond four years. In children, persistence of responses was lower: 

85% (n=84) after 9 months [20] and 92% after 18 months [24] . Percentages of seroprotection 

were not greater with three-dose schedules [22,23], as compared to standard two-dose 

schedule [21–24]. The pooled percentages of seroprotection against hepatitis A were of 92% 

(CI95% = 89%; 95%) two years after vaccination, and 82% (CI95% = 76%; 88%) after five 

years (figures 3 and 4).  

Measles, Mumps and Rubella 

Data on long-term persistence of measles immunity were reported in twelve studies, either in 

children (n=10) [25–34] or adults (n=2) [35,36]. As illustrated on figure 2C, percentages of 

seroprotection varied widely between studies, reflecting the great heterogeneity in the 

populations studied. In HIV vertically-infected Sub-saharian African children not on HAART 

and vaccinated in the first months of life, percentages of seroprotection rapidly dropped 

during follow-up: 62%-73% of primary responders were still protected after 15 months 

[29,31], 41%-49% after 28 months [25,31],and 30% after 50 months [28]. HAART improved 

seroprotection, either for children started on HAART after immunization (69% after six 

months of HAART [28] 40-60% after four to seven years of HAART [26, 34]) or those who 

were vaccinated or revaccinated after the start of HAART (73% after one year [30], 40-82% 

after four years [32]). In this last study, higher percentages of seroprotection were reported 
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four years after vaccination in children started on HAART in their first year of life (82%) 

compared to others (40%) [32].  

In adults, data were scarce and showed conflicting results. In adults vaccinated during 

childhood before HIV infection, at the median age of 35 years, 95% still had protective 

antibody titers (n=59) [36], whereas after revaccination of 26 HIV-infected adults at the age 

of 31 years, only 43% were still above the detection level after one year [35]. 

Because of great heterogeneity, the meta-analysis was restricted to five studies focusing on 

HIV vertically-infected children [26,27,29–31], immunized at the age of 6-42 months, with 

either one [31] or two doses [26,27,29,30] of the MMR vaccine. The pooled analysis 

estimated that in this particular population, protective antibody levels would persist in 68% 

(CI95% = 45%; 88%) of primary responders after two years, and 40% (CI95% = 10%; 73%) 

after five years (figure 3C). 

Only three studies reported data on rubella [26,34] and mumps [26]. After four years on 

HAART, antibodies persisted in 62% of children against mumps and 27-89% against rubella, 

the highest seroprotection rates being reported for children with virological response.  

Tetanus, Poliomyelitis and Pertussis 

Studies on tetanus included 241 children followed from 12 to 53 months after immunization 

(figure 2E) [28,30,32–34,37–39]. Retrospective studies accounted for 76% of participants 

(n=182). Percentages of seroprotection were high: 67-90% within the first two years 

[30,33,34,37–39], 78% after 4 years [28]. Meta-analysis of the four prospective studies 

estimated overall percentages of seroprotection (figure 3D) of 74% (CI95% = 57%; 87%) and 

43% (CI95% = 21%; 66%) two and five years after immunization, respectively. One study 

reported data on immunization against polio virus [37], one against pertussis [4], and one 

against diphtheria [34]. In all reports, duration of seroprotection was shorter than in healthy 

children.  
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Streptococcus pneumoniae  

All 14 studies on persistence of antibodies against S. pneumoniae were prospective, either in 

children (n=5) [40–44] or adults (n=9) [45–53] and either on a conjugate vaccine (PCV, n=6) 

[40–44,49] or the 23-valent polysaccharide vaccine (PPSV23, n=9) [45–48,50–53]. Follow-up 

ranged from 8 to 60 months after immunization (median: 12). The median number of patients 

was 33. The definition of response varied greatly between studies:  either a two-fold and 

greater increase in antibody titers [47,49], or an antibody concentration above either 0.35 

µg/mL [42,43,47], 0.5, µg/mL [40], or 1 µg/mL [40,41,48,49,52]) or on the GMTs alone [44–

47, 49, 50]. After PPSV23 in adults, rates of decrease of antibody concentrations were either 

similar [45,48,52,53] or more rapid [46,50] to that observed in healthy individuals. Beyond 

five years, [47,48], antibody concentrations had dropped below the cut-off values for most 

serotypes. This was reportedly more frequent in patients with low CD4 cell counts at 

vaccination or those who failed to achieve virological suppression [47]. Vaccination with 

PCV was not directly compared with PPSV23 in adults, but two doses of 7-valent PCV 

elicited more sustained responses than one during the one year-follow-up [49].  

In HIV-infected children, the immunogenicity of PCV has been assessed from eight months to 

five years after primary immunization [40–44]. Here again, results were variable: HIV-

infected children reportedly experienced a significantly greater decline of antibody levels 

during follow-up than HIV-uninfected children [42–44]; however with a vaccine scheme 

including two PCVs and one PPSV23 at 8-weeks intervals, Abzug et al. showed that 22 

months after immunization, decline in antibody concentrations were similar to those in HIV-

uninfected infants after PCV alone [40].  

Other antigens 

After immunization against Haemophilus influenzae b, estimates of seroprotection ranged 

from 16% to 78% [5,30,54] in vertically HIV-infected children at different time points after 
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immunization. In the only report on varicella vaccine, less than 50% of 94 HIV-infected 

children (aged 1-8 years) still had detectable VZV IgG one year after the start of 

immunization [6]. For yellow fever, three retrospective studies [55–57] suggested that 

immunogenicity of YF immunization waned more quickly in HIV patients: the proportion of 

patients with non-reactive titers increasing from 17% to 23% over the ten years-period post-

vaccination [57]. In the single study on an inactivated Japanese encephalitis vaccine in 50 

HIV-infected children on HAART, only 4/38 primary responders lost protective antibodies 

during the three-year follow-up, suggesting long-term benef t of the vaccination in this 

population [7].    

Discussion 

Duration of seroprotection, as assessed by quantitative measurement of antibody responses, is 

shorter in HIV-infected patients than in otherwise healthy persons for most licensed vaccines. 

As a comparison, 65-95% of healthy children and 80% of adults maintain protective anti-HBs 

concentrations ten years after vaccination against hepatitis B. With inactivated hepatitis A 

vaccine, mathematical models estimate that protective levels of anti-HAV could be present 

for more than 25 years in adults and 14–20 years in children. Percentages of seroprotection 

reach 93-10% in healthy children ten years after tetanus vaccine and 95-100% after measles 

vaccine (see references in table 2 of the supplementary material). 

 

Our analyses showed a rapid decrease in seroprotection after immunization in HIV-infected 

patients and have several implications: 

 Because of high prevalence and severity of chronic hepatitis B in HIV-infected 

patients, it appears that anti-HBs antibodies should be measured yearly in adults and 

every 2-5 years in children at risk (those in close contact with Ag HBs+ persons or 

living in a high endemicity country). Closer monitoring of anti-HBs titers could be 
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considered in those with the lowest antibody titers at the end of the vaccination course 

(10 to 100 IU). 

 For persons at increased risk for hepatitis A (i.e. travelers, men who have sex with 

men, users of drugs, persons with occupational risk for HAV infection or chronic liver 

disease), anti-HAV antibodies should be monitored every five years since almost 20% 

of primary responders would have lost seroprotection by year five after immunization. 

 For tetanus, the meta-analysis of prospective studies found that around 75% of HIV-

infected children would maintain protective concentrations after two years, and 

retrospective studies reported percentages of seroprotection around 70-80% after five 

years. In this respect, the interval of ten years between boosters seems reasonable. 

 To improve maintenance of seroprotection against measles, the initial vaccination 

scheme should include two doses, ideally administered after the start of HAART, in 

children with undetectable viral load. Children vaccinated before the start of HAART 

and/or with detectable HIV viral load at the time of immunization could be proposed a 

third dose 2-5 years after primary vaccination, when CD4-cell count is >200 or >15%. 

 The WHO recently stated that a single dose of yellow fever vaccine was sufficient to 

confer life-long immunity against the disease in immunocompetent persons. Data 

show that immunity wane more quickly in HIV-infected persons. In these patients, 

determination of antibody titers should be considered in case of potential exposure, 

and revaccination proposed to those with negative titers. 

 For now, data on immunogenicity of PCV or strategies combining PCV and PPSV23 

are too preliminary to state on the optimal timing of booster injections in adults. 

 

Several methodological issues warrant discussion. First, it is remarkable that the median 

number of patients per study was only 40. Data on immunogenicity of vaccines in the 

immunocompromised host are scarce and the small samples in each category gave little power 
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for comparisons between age classes or vaccine schemes. Second, only prospective studies 

were included in the meta-analysis, which may have lead to a certain degree of 

underestimation of seroprotection. Indeed, as illustrated for tetanus, studies pooled in the 

meta-analysis were those with the shortest duration of follow-up and lower percentages of 

seroprotection. This choice was however essential to guarantee the quality of data analyzed. 

Conversely, relying on the exponential decrease could lead to overestimate the decrease in 

seroprotection. The choice of the model was supported by the good fit in studies where at 

least two follow-up points were available (see supplementary material). This model however 

leads by structure to an always decreasing trend in seroprotection with time, implying that all 

vaccinees will loose seroprotection at some point. An alternative assumption would be that 

some individuals would remain seroprotected permanently over time, as it has been 

hypothesized for example with hepatitis A vaccine. 

There was also great heterogeneity in some important variables that complicated comparisons 

across studies: immunologic status at the time of vaccination, use of antiretroviral therapy and 

whether treatment was started before or after vaccination, age, vaccine strain, assays used to 

measure antibody concentrations, antibody levels considered as protective, exposure to wild-

type pathogens that could confound antibody measurements. The small samples gave little 

power for comparisons but several variables seemed to be associated with persistence of 

seroprotection. For example, like for immunocompetent persons, certain vaccine antigens 

such as rubella, tetanus and hepatitis A induce more sustained responses than others [58]. The 

viro-immunologic status and use of antiretroviral therapy at the time of immunization is also 

of critical importance in maintenance of seroprotection. As illustrated for measles, persistence 

of antibody concentrations was improved in children vaccinated or revaccinated while on 

HAART [30, 32], as compared to others [25, 26, 27, 28, 29, 31]. More generally, patients 

immunized while on HAART show prolonged seroprotection for most vaccine antigens, as 

illustrated in a recent review [59]. Similarly, HIV viral load at the time of immunization is an 
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important independent predictor of persistence of seroprotection, as illustrated for hepatitis A 

[21, 22], yellow fever [55] and Pneumococcus vaccines [43].  On the other hand, whereas 

increasing the dose of antigen is an interesting strategy to improve responses in 

immuncompromised hosts [60], there was no clear trend in our meta-analysis indicating that 

this strategy would extend duration of seroprotection among primary responders. 

Finally, antibody response is only one component of the immune response to vaccines. For 

some antigens (i.e. measles, varicella, yellow fever), cell-mediated immunity is the critical 

determinant of protection, and excluding quantification of CMI may lead to a mistaken 

conclusion that boosters are required for all vaccines. Indeed, loss of antibodies does not 

necessarily imply loss of clinical protection and immune memory can persist, even in the 

individuals with low antibody concentrations [61]. As recently underlined in a recent review: 

“a large variety of immune cells and functions are involved in controlling infections and any 

assignment of one as the mechanistic immune functions that contribute to protection (mCoP) 

must recognize that others may be involved as supplements or co-correlates of protection” 

[62]. In this respect, cellular responses seem to play a crucial role in the protection conferred 

by certain vaccines and our choice to exclude reports on CMI lead to a certain degree of 

imprecision in the evaluation of immune responses. Evaluation of CMI provide important 

data on the degree of protection at an individual level but methods of measurement are not 

routinely available and correlates of protection need to be established.  

 

Clinical implications of this work need to be further explored on large prospective cohorts. In 

the future, the evaluation of new vaccines that specifically target persons with impaired 

immunity (inactivated or subunit zoster vaccine, cytomegalovirus vaccine) should confront 

clinical effectiveness with precise evaluation of the both humoral and cellular responses, in an 

attempt to establish reliable correlates of protection in these populations. 
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Figure Legends 

 

Figure 1: PRISMA flow diagram of the search strategy. 

 

Figure 2: Data retrieved from the literature (2A-E) and graphical illustration of the statistical 

modeling for hepatitis B (2F). 

Each symbol represents a percentage of individuals with protective antibody concentrations in 

relation with time (in years) elapsed since immunization, among those who initially 

responded to the vaccine, except for tetanus, where overall percentages of seroprotection are 

presented (responders and non-responders pooled together). The size of points is proportional 

to the sample sizes of studies. Symbols are colour-coded according to the vaccination scheme. 

Figure 2F shows the principle of modeling for hepatitis B vaccine: symbols represent the 

percentages of seroprotection retrieved from the literature and lines show extrapolations of the 

model at two and five years. Estimates of seroprotection (black symbols) are provided by the 

model at two and five years. 

 

Figures 3 and 4: Meta-analysis of the percentages of seroprotection two years (figure 3) and 

five years (figure 4) after last vaccine dose, by vaccine antigen. Right-sided columns detail 

the characteristics of the study participants. “Age”: mean or median age (in years), 

“HAART”: percentage of participants on HAART at the time of immunization, “CD4”: mean 

or median CD4-cells count (/mm3) at the time of immunization, “CV”: mean or median HIV 

viral load (log/mL) at the time of immunization and “Und.”: percentage of study participants 

with undetectable HIV viral load at the time of immunization. 

The color of bars indicates the vaccination scheme: 

Hepatitis B - yellow bars: either three 10 µg-doses IM [Lao-araya, Scolfaro] or three 5 µg-

doses SC [Manucci] in children or three 20 µg-doses IM  in adults [Kaech, Rey]; red bars: 
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three 40 µg-doses IM [Cooper, Cruciani]. Heterogeneity: at 2 years, Q=121.9, p<0.0001, I2 = 

95% [92%; 97%]; at 5 years, Q=87.7, p<0.0001, I2 =93% [88%; 96%]. 

Hepatitis A – yellow bars: 1 dose [Weinberg, Crum-Cianflone, Kernéis, Launay]; red bars: 2 

doses [Kernéis, Launay]. Heterogeneity: at 2 years, Q=2.9, p=0.71, I2 = 0% [0%; 57%]; at 5 

years, Q=6.7, p=0.25, I2 =25% [0%; 69%]. 

Measles – yellow bars: 1 dose [Moss]; red bars: 2 doses [Melvin, Bekker, Brunell, Fowlkes]. 

Heterogeneity: at 2 years, Q=25.6, p<0.0001, I2 = 84% [65%; 93%]; at 5 years, Q=47.8, 

p<0.0001, I2 =92% [84%; 96%].                                                                                                                          

Tetanus – yellow bars: 2 to 5 doses + boosters, according to local practices. Heterogeneity: 

Q=2.5, p=0.48, I2 = 0% [0%; 81.3%]; at 5 years, Q=4.5, p=0.22, I2 =33% [0%; 76%]. 
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