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OPINION

Using health technology to capture digital
phenotyping data in HIV-associated

neurocognitive disorders
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Introduction

The ubiquity of smartphones is transforming health
services and management of patient care to increase
patient symptom tracking, accessibility to resources, and
personalization of care [1]. Indeed, 81% of Americans own
a smartphone, and ownership among ethnic minorities,
who are disproportionally affected by HIV, is equally high
[2]. Medical and public health practices supported by
mobile devices allow medical professionals and caregivers
to improve communication and patient symptom tracking
as well as focus on individually tailored treatments and
preventive care [3]. Mobile health technologies have
proven efficacious in reducing disease burden among
persons living with HIV (PWH), including strategies to
improve medication adherence, increase retention in care,
and facilitate social support systems [4–6]. Furthermore,
several studies focusing on optimizing HIV care among
populations with co-occurring HIV and substance use
disorder have found promising success using mobile health
technologies to promote adherence to antiretroviral (ART)
medications [7–9].

Although mobile health interventions provide stream-
lined and lower cost alternatives to improve HIV-related
healthcare, many published mobile phone tools, such as
two-way text messaging or ecological momentary
assessments (EMA), requires the user to actively engage

with the device to provide input. While there are
advantages of active engagement with an mHealth
intervention, passive collection of digital data eliminates
the need for active user engagement by collecting data
continuously and objectively in the background, as a user
goes about their daily activities [10]. For example,
accelerometer along with gyroscope, GPS, WiFi, and
smartphone microphone data have been used to detect
physical activity and daily behaviors [10]. With the wealth
of health-related data captured via passive, as well as
active, digital health devices, researchers are able to
develop and interpret a digital phenotype. Digital
phenotyping, as defined first by Jukka-Pekka Onnela
(2016), is the ‘moment-by-moment quantification of the
individual-level human phenotype in situ using data from
personal digital devices’ [11]. Digital phenotyping can
provide a comprehensive understanding of the specific
symptomology and experience of disease that can impact
diagnosis, treatment, and management of disease [12].

Considering the potential compounding effects of HIV
and aging on the brain, older PWH are at a high risk for
HIV-Associated Neurocognitive Disorders (HAND) and
may be at increased risk for other age-related neurode-
generative diseases including Alzheimer’s disease and its
precursor, amnestic mild cognitive impairment (aMCI)
[13–15]. Identifying preclinical factors that can distin-
guish among those with HAND, Alzheimer’s disease, and
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aMCI is challenging due to considerable overlap in
neuropsychological profiles [16]. Cognitive dysfunction
among PWH has been associated with ART nonadher-
ence, unemployment, increased dependence in activities
of daily living, depressed mood, and increased risky
behaviors [17,18]. Considering the multisystem impact of
aging, improving neuropsychological outcomes among
aging PWH is a global mental and public health priority
[19]. Furthermore, differentiating HAND from neuro-
degenerative diseases is critical to understanding the
likelihood of cognitive impairment progression and for
effectively providing targeted interventions.

Given the increased risk of neurocognitive impairments
in PWH, mobile cognitive testing provides easily
accessible alternatives to traditional neuropsychological
evaluations and can potentially detect more nuanced
neurocognitive changes [20]. Furthermore, advance-
ments in innovative wearable devices and optimization of
smart home systems allow for streamlined and continuous
collection of clinical, physiological, and ambient data
relevant to brain health that may be suggestive of
preclinical neurocognitive decline [21]. These novel
methodologies may aid in the efforts to differentiate
among HAND, aMCI, and Alzheimer’s disease profiles by
providing real-time and ecologically valid indications of
an individual’s neurocognitive and everyday functioning.

Active and passive digital health technologies can
significantly improve the way researchers assess cognitive
and everyday functioning by transitioning from tradi-
tional clinical assessments to digital assessments and
continuously captured data from daily activities. Despite
these benefits, there are numerous challenges and barriers
to address before clinical implementation related to
disentangling cognitive profiles among PWH, validating
active and passive assessment tools, integrating sensor
platforms, participant privacy, data security, interven-
tional feasibility, and ethical issues. Despite these
challenges, dissemination of mobile cognitive testing
and passive digital technologies is becoming more
feasible, with significant efforts now focused on validating
the psychometric properties of these tools (e.g. [22,23]).

The purpose of this brief review is to discuss the utility of
digital health assessment in evaluating cognitive trajecto-
ries among PWH, review research designs amenable to
integrating digital technologies, and describe examples of
challenges and barriers that may arise when implementing
digital technologies into research designs.

Digital health assessment measures

Active engagement
Substantial evidence suggests an association between
cognitive impairment and declines in everyday functioning

among PWH; however, there are also cognitively healthy
older adults with HIV that exhibit functional impairments
on lab-based assessments and cognitively impaired older
PWH that remain functionally unimpaired [17,24]. These
unexpected findings may reflect the need to investigate
other real-world factors that may detrimentally affect
functioning in aging PWH. Current research supports the
feasibility of EMAs to monitor real-world variability in
mood, stress, social support, coping, everyday activities,
substance use, and cognition among younger to older
adults living with HIV [25–29]. For example, one study
examined the validity of smartphone-based EMA in
relation to lab-based assessments of substance use among
older adults with and without HIVand found that EMA-
reported substance use was significantly correlated with
lab-based assessments. This study additionally investigated
real-time ecologically valid data to better understand
predictors of health and behaviors and found effects of
mood and pain on subsequent substance use such that
greater anxious mood, happiness, and higher pain levels
significantly affected substance use [30]. Furthermore,
results from another studyexploring substance use and pain
using smartphone-based EMA suggest a bidirectional
association between pain and daily drinking and lower
levels of daily worst pain with higher coping abilities [31].
Another study observed that older PWH spent substantial
time at home, alone, and engaged in passive leisure
activities (e.g. watching TV), and that greater time engaged
in passive leisure activities correlated with worse cognitive
functioning [26]. This last finding is consistent with
research among persons with serious mental illness
including schizophrenia that showed less productive
activity, fewer social interactions, greater time at home
and higher engagement in passive leisure activities in this
group [32]. Thus, smartphone-delivered EMA may be a
useful and feasible method to better understand variability
and correlates of daily functioning among PWH.

Traditional assessment of cognition typically requires an
in-person comprehensive neuropsychological evaluation
that is time and resource intensive, nonecologically valid,
and only represents a snapshot of a patient’s cognitive
abilities at the time of assessment. Traditional instruments
are therefore unable to detect subtle, real-world declines
in cognitive functioning. Advances in digitalizing
traditional neuropsychological assessments may improve
the sensitivity and specificity of clinical diagnoses at earlier
stages of neurocognitive diseases via frequent and less
burdensome digital assessments [20]. Growing research
on validating mobile cognitive assessments suggests that
mobile cognitive assessments are feasible and valid among
older adults as well as adults with head injury,
schizophrenia, and substance use disorders [33–37].
Furthermore, results of a validation study evaluating a
smartphone-based cognitive impairment screener were
promising with strong preliminary evidence indicating
construct and criterion validity as well as high sensitivity
to detect neurocognitive impairment among PWH [38].

16 AIDS 2021, Vol 35 No 1



 Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

Mobile cognitive assessments may serve as an adjunct to
traditional neuropsychological testing. For example,
mobile cognitive data collected via ecological momentary
cognitive testing (EMCT) methods can be aggregated and
analyzed to examine temporal relationships between
variability in cognition with indicators of, for example,
everyday functioning (e.g. mood, activities of daily living,
socially engaging activities, physical activity, and passive
leisure activities), sleep, physiological functioning, and
social activity, among others [26]. Moreover, EMCTs
may be able to serve as screening instruments to indicate
whether a person needs a more comprehensive labora-
tory-based neuropsychological assessment. Overall,
mobile cognitive testing permit remote testing on a
frequent or infrequent schedule in a person’s natural
environment, a design flexibility that is not afforded to
traditional neuropsychological testing, and may therefore
provide more reliable indicators of early cognitive
difficulties among older PWH that clinic-based tools
cannot detect, and/or identification of need for
comprehensive in-person testing.

There are several challenges associated with traditional in-
person neuropsychological evaluations that may be
addressed using mobile cognitive testing. For instance,
evaluating individual effort put forth during traditional
neuropsychological evaluations to ensure interpretability
remains a significant challenge. Mobile cognitive tests
could integrate built-in metrics (e.g. reaction time) or
embedded (e.g. symptom validity tests) effort measures to
gauge the level of effort given to an assessment.
Furthermore, smartphone cameras could potentially
capture videos of pupillometry during task completion
as an indicator of attentional allocation which could also
serve as a measure of effort [39]. More analogous to
traditional tests of effort, studies currently in preparation
have preliminary evidence suggesting efficacy of a mobile
assessment using a 6-item word list to evaluate effort in
both cognitively healthy and impaired adults. Finally,
individuals invested in their results may feel more
motivated to provide their best effort on mobile cognitive
tests as there is the potential to provide real-time
performance feedback to individuals, allowing them to
track changes in their cognitive health over time.

Passive engagement
Examples of existing passive features that can be collected
from digital health technologies are presented in Table 1
[40–63]. Technologies were selected based on the
following: first, experience of the authors using the
product/tech in previous and/or ongoing studies; second,
knowledge of products/tech from colleagues, peer-
reviewed articles, conference presentations etc.; third,
brief review of the literature on novel technologies and
applications. This list is meant to be an informed sampling
from the field, and this commentary should not be viewed
as a substitute for a systematic review.

Smartphone functionality has the ability to passively
collect a myriad of digital data streams from GPS/GIS,
microphone, camera, accelerometry, phone usage
metrics, and keyboard typing features. For example,
preliminary evidence from one study suggests that
symptoms related to pain and mood which were
previously only captured via subjective self-report
measures may be alternatively monitored by objective
passive movement data (i.e. actigraphy) among PWH
[64]. Furthermore, this study found that psychomotor
and sleep patterns measured via wearable sensors were
significantly predictive of pain severity, pain chronicity,
and worry severity among PWH. Another recent study
examined the feasibility and discriminant ability of
continuously captured real-world data from a unified
and unobtrusive monitoring platform to differentiate
between participants with and without cognitive
impairment. The study design spanned 12 weeks in
which participants were monitored via consumer-grade
smart devices [i.e. iPhone 7 plus (Foxconn, Tucheng
District, New Taipei, Taiwan; Wistron, Neihu District,
Taipei, Taiwan; Pegatron. Beitou District, Taipei,
Taiwan), Apple Watch Series 2 (Quanta Computer,
Taoyuan City, Taipei, Taiwan; Compal Electronics,
Neihu District, Taipei, Taiwan), iPad pro (Foxconn,
Tucheng District, New Taipei, Taiwan) with smart
keyboard, a Beddit sleep monitoring device (Ingram
Micro CE, Irvine, California, USA), and all associated
applications to collect sensor and phone-usage data].
Domains assessed include gross motor function, auto-
nomic nervous system, circadian rhythm, behavior, social
engagement, cognitive control, attention, fine motor
control, and language. Results indicate that the sensor
platform was adequately able to differentiate between
cognitively healthy controls and participants with
cognitive impairment from a relatively short period of
data collection (i.e. 12 weeks) [65]. Although passive
metrics of cognition are still in the early stages of clinical
validation, they hold promise in progressing researcher’s
ability to classify and detect early nuanced behavioral and
cognitive changes associated with neurodegenerative
diseases.

Research designs

Complex continuously collected data could be leveraged
to understand the effects of comorbid conditions (e.g.
substance use and psychiatric disorders) within the
context of PWH and neurocognitive decline. Depending
on the specific aims of the research study, digital health
technologies can be appropriately integrated into research
designs to understand complex relationships between
everyday life activities, health indicators, and cognitive
function. Digital health technologies offer the ability to
have a myriad of study designs, including (for example):
burst; longitudinal; hybrid of burst and longitudinal

Using health technology to capture digital phenotyping data Kohli et al. 17
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Table 1. Examples of mobile tools for gathering digital phenotyping data.

Device/App
Name Device type

Operating
system Method Data type

Behavioral features
collected

ActiGraph GT9Xa

[40–42]
Wrist worn

wearableb
iOS and

Android
Operation: passive
Data transfer: active

Frequency: high
Continuity: continuous

Energy expenditure
Heart ratec

Metabolic rate
Physical activity
Sleep

Antisociald Smartphone
application

Android Operation: passive
Data transfer: active

Frequency: high
Continuity: continuous

Social activity

Apple Watch
Series 4a

[43–45]

Smartwatch iOS Operation: passive
Data transfer: active

Frequency: high
Continuity: continuous

Heart rate
Fall detection
Physical activity
Sleep

BACtrack Skyn
[46,47]

Wrist worn
wearable

iOS Operation: passive
Data transfer: passive

Frequency: moderate
Continuity: continuous

Skin temperature
Transdermal alcohol

concentration
BrainChecka

[48,49]
Smartphone

application
iOS Operation: active

Data transfer: passive
Frequency: low
Continuity: intermittent

Cognition

BiAffect [50,51] Smartphone
application

iOS and
android

Operation: passive
Data transfer: passive

Frequency: high
Continuity: continuous

Cognition
Mood
Neuropsychiatric symptoms

Centrepoint
Insight by
ActiGrapha,d

Smartwatch iOS and
Android

Operation: passive
Data transfer: passive

Frequency: high
Continuity: continuous

Metabolic rate
Physical activity
Sleep

Delta Cognitive
Testing Appa

Smartphone
application

iOS Operation: active
Data transfer: passive

Frequency: low
Continuity: intermittent

Cognition
Speech/Language

E4 [52–54] Smartwatch iOS and
Android

Operation: passive
Data transfer: passive

Frequency: high
Continuity: continuous

Skin temperature
Electrodermal activity
Heart rate variability
Physical activity
Blood volume pulse

EmbracePlus [54] Smartwatch iOS and
Android

Operation: passive
Data transfer: passive

Frequency: high
Continuity: continuous

Blood volume pulse
Electrodermal activity
Heart rate variability
Interbeat interval
Physical activity
Skin temperature

Fitbit [55,56] Smartwatch iOS and
Android

Operation: passive
Data transfer: active

Frequency: high
Continuity: continuous

Calorie expenditure
GPS
Heart rate
Physical activity
Sleep

Garmin
vivosmart
[57,58]

Smartwatch iOS and
Android

Operation: passive
Data transfer: passive

Frequency: high
Continuity: continuous

Blood oxygen saturation
GPS
Heart rate variability
Physical activity
Sleep

GPS Logger [59] Smartphone
application

Android Operation: passive
Data transfer: active

Frequency:
customizable

Continuity: continuous

GPS/navigation

KardiaMobile 6La

[60]
Smartphone

application
iOS and

Android
Operation: active
Data transfer: passive

Frequency: low
Continuity: intermittent

6-Lead electrocardiography

Mezurio [61] Smartphone
application

iOS and
Android

Operation: active
Data transfer: passive

Frequency: high
Continuity: intermittent

Cognition
Fine motor control
Speech analysis

mindLAMP [62] Smartphone
application

iOS and
Android

Operation: active &
Passive

Data transfer: passive

Frequency: low
Continuity: intermittent

EMA
Cognition
Phone sensor data

myTracks [59] Smartphone
application

iOS Operation: passive
Data transfer: passive

Frequency:
customizable

Continuity: continuous

GPS/navigation

NeuroUXd [63] Weblink to
smartphones

iOS and
Android

Operation: active
Data transfer: passive

Frequency: low
Continuity: intermittent

Cognition
EMA
Integration with Fitbit
Well being

Pillow Automatic
Sleep Trackerd

Smartphone
application

iOS Operation: passive
Data transfer: active

Frequency: moderate
Continuity: intermittent

Sleep

Novel tools are released regularly and the presented list is not a comprehensive list of available tools; nor are they being promoted as we have not
personally tested many of these tools. Interventions were not included as we are focused on digital assessment data for digital phenotyping. EMA,
ecological momentary assessments.
aFDA-cleared or CE-certified.
bActiGraph GT9X can be worn on the wrist, waist, ankle, or thigh.
cHeartrate measurement requires compatible Bluetooth Polar H7 or Polar H10 heart rate monitors.
dThis tool has not been validated in the current literature or has an ongoing validation study.
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designs. Burst designs are characterized by short and
intensive assessment periods to capture high-frequency
data that are useful in understanding the effects of
comorbidities as well as temporal relationships [66]. Burst
designs typically range from an average of one day to
approximately one month. Longitudinal designs offer
continuous, objective, unobtrusive measures via sensors
and devices to capture real-time data in the home or in
everyday environments [67]. This design permits a
continuous collection of comprehensive functional data
over a longer span of time with minimal intrusion and
burden. This approach offers insights into subtle
intraindividual behavioral and lifestyle changes that could
be indicative of early signs of neurodegenerative diseases.
Finally, a hybrid of burst and longitudinal designs typically
employs short periods of data collection over a longer
span of time (e.g. 2-week bursts every quarter for 2 years).

Prior research has used traditional neuropsychological
evaluations to examine intraindividual variability in
neurocognitive performance among PWH; however,
mobile cognitive testing may potentially detect more
nuanced neurocognitive changes [68]. Several research
designs can be employed to investigate fluctuating
patterns of neurocognition over time using mobile
technology. Burst designs using active data collection (e.g.
EMCT) can provide a wealth of information within a
specified time period to examine associations between
neurocognition, everyday functioning, and mood.
Longitudinal designs, employing continuous and pas-
sively collected data, can be utilized to examine temporal
relationships and predictors of neurocognitive perfor-
mance using real-time data from everyday environments.
Hybrid designs, that leverage both active and passively
collected data, offers the ability to frequently assess
neurocognition as well as everyday behaviors, lifestyle,
and mood to evaluate intraindividual variability.

Thus far, studies have yet to assess intraindividual
variability in neurocognition among PWH using digital

health data. We conducted a literature search to assess the
use digital assessments among PWH (Table 2 [22,38,69–
73]). To identify articles for this nonsystematic review of
the literature, we searched the PubMed database using the
following search terms ‘digital OR digital assessment OR
mobile assessment’, AND ‘HIV.’ Then, we reviewed the
reference list for pertinence and compiled relevant
articles. We also reviewed relevant articles reference lists
to identify additional articles. Further, we restricted our
searches to studies published in peer-reviewed English-
language journals. No restrictions were placed on samples
demographics or sample sizes.

Challenges and barriers

Prior to implementing digital technologies into clinical
practice, research is warranted to identify the potential
mechanisms underlying the heterogeneity of aging,
especially among populations at a higher risk for cognitive
impairment such as PWH. In addition, establishing
validated assessment tools with normative data across
demographic and clinical populations that are culturally
unbiased or language-unbiased remains a concern with
traditional neuropsychological evaluations; without the
consideration of factors associated with the usability of
digital technologies and smartphones among older
persons with comorbid conditions. Moreover, there are
limited integrated platforms that have been developed
and well validated that incorporate passive data collection
methods with active features to provide cohesive data on
activities of daily living and patterns of behavior [74]. The
lack of well validated assessment tools to be implemented
into clinical care could be due to, in part, funding
limitations to support such studies. Considering there are
a multitude of companies working on commercialized
digital health products and platforms, researchers could
work more closely with industry partners to develop
complex analytic algorithms that can integrate large
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Table 2. Literature review on the use of digital assessments among persons with HIV.

Reference Sample size, N Study location Digital assessment method Assessment frequency

Anderson et al. [69] 39 PWH Atlanta, Georgia Novel Computerized Cognitive
Assessment Devicea

Once during study period

Campbell et al. [70] 67 PWH, 36 HIV� San Diego, California Mobile Color-Word Interference Testb

and Mobile Verbal Learning Testc
Once/day for 14 days

Campbell et al. [71] 52 PWH, 32 HIV� San Diego, California ActiGraph GT9X Linkd Once/day for 5–14 days
Katzef et al. [72] 102 PWH, 112 HIV� South Africa, Africa Neuroscreene Once during study period
Moore et al. [22] 58 PWH, 32 HIV� San Diego, California Mobile Color-Word Interference Testb Once/day for 14 days
Robbins et al. [38] 50 PWH Manhattan, New York Neuroscreene Once during study period
Robbins et al. [73] 102 PWH South Africa, Africa Neuroscreene Once during study period

PWH, persons with HIV.
aNovel Computerized Cognitive Assessment Device assesses processing speed, episodic memory, working memory, and executive function.
bMobile Color-Word Interference Test assesses the Stroop effect (i.e. cognitive inhibition).
cMobile Verbal Learning Test assesses verbal learning.
dActiGraph GT9X Link contains an accelerometer, gyroscope, and magnetometer sensors.
eNeuroscreen assesses processing speed, executive function, working memory, verbal learning and memory, and motor speed.
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amounts of digital data and process it in a meaningful way
in the context of early changes in cognition.

To transition from research settings to commercial use and
clinical care, health-related digital technology platforms
must be sustainable and scalable without driving up
consumer and healthcare costs. Within the commercial
market, there are extant start-up companies developing
digital technology platforms marketed directly to the
consumer; however, many lack extensive research valida-
tion and involvement of care providers and consumers in
the product development process [75]. It is crucial on the
part of the developer to engage clinicians and consumers
when addressing the needs and concerns of both parties to
develop an effective product. For example, one study that
examined appraisals of the potential risks and barriers of
participating in a texting-based research study found that
participants were particularly concerned with information
privacy, confidentiality, and data security; however, were
more likely to participate if these concerns were
appropriately addressed [76].

Conclusion

Despite these barriers, the ubiquity of digital health
devices across the lifespan makes the dissemination of
mobile health assessments increasingly feasible [2].
Furthermore, increased accessibility to digitally captured
health metrics allows individuals to proactively monitor
their own changes in health and behaviors. Digital
phenotyping will continue to evolve as new technologies
emerge, individuals engage with digital technologies in
new ways, and advances in data analytics and artificial
intelligence continue to improve. This type of research
requires a multidisciplinary approach, and could advance
our understanding of the complex overlap in cognitive
profiles among aging PWH.
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