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The important role of the immune system in the maintenance 
of human health and protection against infections has been 
recognized for over a hundred years. However, it was only 

in the past few decades that it has become apparent that inflam-
matory components of the immune system are often chronically 
elevated in aged individuals and associated with an increased inci-
dence of cancer, cardiovascular disease, neurodegenerative disor-
ders and others1–3. From these observations, it has been postulated 
that inflammation plays a critical role in regulating physiological 
aging4,5. Furthermore, the well-established nine hallmarks of aging6:  
(1) genomic instability, (2) shortening telomere length, (3) epigenetic 
modifications, (4) loss of proteostasis, (5) deregulated nutrient sens-
ing, (6) mitochondrial dysfunction, (7) cellular senescence, (8) stem 

cell exhaustion and (9) altered intracellular communication, have all 
been shown to be linked to sustained systemic inflammation7–16.

Contrary to the acute response, which is typically triggered by 
infection, chronic and systemic inflammation is thought to be trig-
gered by physical, chemical or metabolic stimuli (‘sterile’ agents) 
such as those released by damaged cells and environmental insults, 
generally termed ‘damage-associated molecular patterns’ (DAMPs). 
This type of inflammation is associated with aging and is character-
ized by being low-grade and persistent, ultimately leading to col-
lateral damage to tissues and organs1,17. Despite the importance of 
this type of inflammatory reaction, there are currently no standard 
biomarkers to characterize a chronic inflammatory state and studies 
have generally yielded conflicting results18,19.
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While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most 
at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8–96 years, we developed a deep-learning 
method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with 
multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in cen-
tenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac 
remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular 
senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we iden-
tify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the 
early detection of age-related clinical phenotypes.
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Recent work from our group identified a cellular composite met-
ric for immune aging (IMM-AGE), which was strongly associated 
with all-cause mortality16. Here, we have extended our studies to 
focus on soluble immune biomarkers and define the relationship 
between systemic chronic inflammation and disease. We set out 
to establish a broad survey of immunity in over 1,000 individuals 
(the Stanford 1000 Immunomes Project (1KIP)), wherein biologi-
cal samples from 1,001 individuals were obtained between 2007 
and 2016 and comprehensively measured in a single facility, the 
Stanford Human Immune Monitoring Center (HIMC). At this cen-
ter, peripheral blood specimens were processed and analyzed using 
multiple technological platforms for gene expression, serum cyto-
kine level, cell subset composition, cellular responses to multiple 
stimuli and seropositivity to cytomegalovirus (CMV) infection.  
For 902 individuals, a comprehensive health assessment using a 
53-feature clinical questionnaire was also obtained.

Given the well-established importance of chronic inflammation 
for many human diseases and the lack of standard measures20, we 
used deep-learning methods on blood immune biomarkers to con-
struct a metric for age-related chronic inflammation (iAge). iAge 
predicts important aging phenotypes and provides insights into the 
mechanisms leading to vascular aging. In addition, this metric was 
associated with exceptional longevity and with all-cause mortal-
ity in the Framingham Heart Study. We demonstrate that the most 
robust contributor to iAge, the interferon (IFN)-related chemokine 
CXCL9, was associated with an upregulation of multiple inflam-
matory pathway genes, downregulation of proliferation pathways 
and endothelial cellular senescence. Moreover, CXCL9 suppressed 
vascular function in aortic tissue from mice and correlated with 
subclinical cardiac remodeling and arterial stiffness in a validation 
study of healthy older adults.

Therefore, we have identified a metric for systemic chronic age-
related sterile inflammation which tracks with multiple disease phe-
notypes in multiple cohorts and thus, could be used as a metric for 
healthy versus unhealthy aging. Our results also demonstrate a link 
between inflammatory molecules of the immune system and vas-
cular biology.

Results
Study design of the Stanford 1000 Immunomes project. Between 
2007 and 2016, blood samples were drawn from ambulatory par-
ticipants (n = 1,001) (339 males and 662 females) aged 8 to 96 years 
(Extended Data Figs. 1 and 2) who had been recruited at Stanford 
University (Stanford 1KIP) for a longitudinal study of aging and 
vaccination5,21–29 and for an independent study of chronic fatigue 
syndrome30. Only healthy controls were included (Methods). For 
all samples of the Stanford 1KIP, deep immune phenotyping was 
conducted at the Stanford HIMC, where peripheral blood speci-
mens were processed and analyzed using rigorously standardized 
procedures31. Serum samples were obtained and used for protein 
content determination (including a total of 50 cytokines, chemo-
kines and growth factors) (n = 1,001) and to assess CMV status 
(n = 748), a major determinant of immune system variation22,25. 
Peripheral blood mononuclear cells (PBMCs) or whole-blood sam-
ples were used for the determination of gene expression (n = 397), 
cellular phenotypes and frequencies (n = 935) and for investigation 
of in vitro cellular responses to a variety of cytokine stimulations 
(n = 818). Extended clinical report forms were collected from 902 
out of 1,001 individuals, of which 299 were males and 603 were 
females (Extended Data Fig. 1). A total of 37 additional older adults 
(19 centenarians and 18 control participants) from Bologna, Italy, 
were included and screened for serum proteins to derive iAge on 
these extremely long-lived humans.

Deep-learning analysis of circulating immune biomarkers. Given 
the increasingly recognized effect of systemic chronic inflammation 

in the development of a wide variety of diseases associated with 
aging, especially in cardiovascular disease5,32, we set out to con-
struct a metric for age-related chronic inflammation that could 
summarize an individual’s inflammatory burden. We undertook an 
unbiased approach to compactly represent the nonlinear structure 
of the cytokine network. To do so, we developed a deep-learning 
method called guided auto-encoder (GAE). The GAE method is a 
type of deep neural network that utilizes nonlinear equations and 
effectively eliminates noise and redundancy in data, yet retaining 
the most relevant biological information from circulating immune 
protein data.

To test the robustness and quality of the GAE method, we com-
pared the accuracy of GAE against other widely used dimensional-
ity reduction methods that use linear equations, such as the Elastic 
Net, Gradient Boosting Decision Tree (GBDT) and principal-com-
ponent analysis (PCA), as well as those involving nonlinear equa-
tions, such as plain auto-encoders and neural networks (Extended 
Data Fig. 3a–c). We employed fivefold cross validation and mea-
sured the predictive performances of each method on the test set. 
Overall, the GAE method utilized (a two-layer fully connected 
neural network with five nodes in each layer) outperformed other 
methods in predicting chronological age (cAge) (P < 0.05) with the 
exception of the classic neural network (P = 0.54) (Extended Data 
Fig. 3b). The average reconstruction errors on the test set for pre-
diction of age and circulating immune protein data were 15.2 years 
and 0.26 (normalized), respectively. These results indicate that the 
phenomenon of low-grade chronic inflammation in aging humans 
is best modeled using nonlinear methods, which take into account 
network structure and redundancy in immunological protein bio-
markers. This metric for chronic inflammation accurately predicts 
cAge in the population (Fig. 1a) using the total inflammatory 
burden as measured by the level of circulating immune proteins 
(Extended Data Fig. 4).

iAge predicts multimorbidity and frailty. To gain further insights  
into the effect of age-related chronic inflammation on age-related 
pathology, we computed a regression analysis between the total 
number of age-related diseases (multimorbidity) and iAge. 
Multimorbidity is the number one priority for global health research 
and has become the gold standard in aging research as it represents 
the accumulation of physiological damage in an individual33. The 
items analyzed included different diseases of different physiologi-
cal systems: cancer, cardiovascular, respiratory, gastrointestinal, 
urologic, neurologic, endocrine–metabolic, musculoskeletal, geni-
tal–reproductive and psychiatric dysfunctions. All these disease 
features were binary. For these analyses, we controlled for age, body 
mass index (BMI), sex, CMV and high cholesterol (also a binary 
category), because of the reported effect of each of these variables 
in the etiology of age-related pathologies. We observed a significant 
correlation between iAge and multimorbidity in the older adults in 
this study (>60 years old) (n = 285, P < 0.01) (Fig. 1b). This high-
lights the key role of iAge in the accumulation of physiological dam-
age during aging.

Next, we envisioned an unbiased approach to select predic-
tors of multimorbidity based on available data for a total of 902 
Stanford 1KIP participants while controlling for the age effect. To 
do so, we used a shrinkage method for variable selection by cross 
validation, called Elastic Net, which has been increasingly used in 
immunology, aging and other medical fields over the past years34. 
We applied differential penalties for each potential predictor 
such that the machine-learning procedure would ‘force’ age to be 
selected, while imposing a stringent penalty to all other features so 
that the variables selected do not correlate with age (Extended Data 
Fig. 5a). The mean absolute error (MAE) for prediction of multi-
morbidity was 0.41 (Extended Data Fig. 5b). The top features with 
the largest coefficients included iAge, high cholesterol and BMI  
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(Extended Data Fig. 5c). In addition, immune parameters such 
as total CD8+ T cells, plasmablasts, transitional B cells such as 
IgD+CD27− and IgD−CD27− B cells (negative predictors), effector 
CD8+ T cells, total lymphocytes, monocytes and central memory 
T cells (positive predictors) were predictive of multimorbidity 
(Extended Data Fig. 5d). Collectively, these results show that the 
inflammatory clock is a metric for overall health linked to multiple 
diseases associated with aging.

To longitudinally assess the importance of iAge in age-related 
functional deterioration, we calculated iAge in a subgroup of 29 
older adults in 2010 and a frailty score including the time-up-and-
go test35 was measured in 2017 for the same participants. Using a 
linear regression model where frailty score in 2017 was regressed 
onto iAge calculated in 2010 and controlled for cAge, sex, BMI and 
CMV status, we found that iAge from 2010 was predictive of frailty 
score in 2017 (R2 = 0.81, P < 0.001; Fig. 1c). Notably, the contribu-
tion of iAge to frailty score was significantly stronger than that of 
calendar age (Fig. 1d).

Lower inflammatory clock index in centenarians. Next, we 
explored the relationship between inflammatory age and excep-
tional longevity. We computed an inflammatory index in an addi-
tional cohort of 37 individuals, 18 of which were 50–79 years old 

and 19 were centenarians, except for 1 individual who was 99 years 
old at the time of blood extraction. To do so, we first ranked both 
cohorts in terms of cAge and iAge. For each participant, we then 
computed the difference of their cAge rank and iAge rank and used 
this difference (iAge index) to stratify participants into high and 
low, if they were above or below the population rank mean, respec-
tively. Last, we calculated enrichment for exceptional longevity in 
the low iAge index group (individuals with most protective phe-
notypes) by hypergeometric test. Sixty-eight percent (13 out of 19) 
centenarians were in the low rank group (P = 0.028), whereas only 
31% (6 out of 19) were in the high rank group. In contrast, there 
were 77% (14 out of 18) of controls in the high rank versus 23% in 
the low rank group (Fig. 1e), which indicates that regardless of cAge, 
centenarians have a protective iAge index phenotype. This indicates 
that iAge is associated with exceptional longevity.

To further validate the clinical implication of the iAge score, we 
leveraged data from the Framingham Heart Study36, a longitudi-
nal cohort tracking thousands of individuals for decades. As there 
were no sufficient proteomics data to directly estimate iAge in the 
cohort, we derived a gene expression signature of iAge using avail-
able data from 397 participants in our study and performed an 
enrichment analysis of the derived gene signature on each sample in 
the Framingham Heart Study (Methods). We observed that the iAge 
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Fig. 1 | The inflammatory clock of aging tracks with multimorbidity, frailty and exceptional longevity. a, Using a GAE method on 50 circulating immune 
proteins, we derived iAge to predict cAge. Ten age-related disease items were selected to characterize the clinical significance of iAge. The items analyzed 
included different diseases and physiological systems: cancer, cardiovascular, respiratory, gastrointestinal, urologic, neurologic, endocrine–metabolic, 
musculoskeletal, genital–reproductive and psychiatric. All these disease features were binary. b, After adjusting for covariates, iAge was significantly 
correlated with multimorbidity in the older population analyzed (>60 years old, n = 285) (boxes represent 25th and 75th percentiles around the median 
(line); whiskers represent 1.5× interquartile range). c, For a subset of older adults (n = 29), frailty was assessed in 2017 using a modified frailty score 
(Methods). iAge measured in 2010 predicted the frailty score 7 years in advance. d, We applied linear regression where predicted frailty scores from 
2010 were regressed onto observed frailty scores from 2017. Correlation coefficient (R2) and P value of F-test of overall significance are reported. iAge 
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iAge index (protective phenotype), whereas the control older adults group were over-represented in individuals with high iAge index.
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gene signature was significantly associated with all-cause mortality 
following adjustment to multiple covariates associated with mortal-
ity, including age, sex, smoking, cholesterol levels, blood pressure, 
diabetes and existence of a cardiovascular disease (P = 0.02, Cox 
proportional hazards model, n = 2,290).

iAge is correlated with immunosenescence. Canonical acute 
inflammation proteins such as C-reactive protein and interleukin 
(IL)-6 have been associated with immunosenescence in previous 
studies37,38, but the relationship with systemic chronic inflammation 
(SCI) has not yet been established. To investigate this link, we first 
used the frequency of naive CD8+ T cells, which are well-known 
markers for immunosenescence, and estimated the contribution of 
iAge after controlling for Age, CMV and sex by a multiple regres-
sion model. Not surprisingly, age was the strongest contributor to 
changes in naive CD8+ T cells followed by iAge, CMV (negative 
contributors) and sex (frequency of total CD8+ T cells in females 
was 24% versus 30% in males; Fig. 2a).

To examine the effect of iAge in the immune response, we 
used a well-established multiplexed assay of phosphorylated 
STAT molecules in PBMCs following different stimulations in 
vitro39,40. PBMCs were stimulated with the cytokines IFN-α, IL-6, 
IL-10 and IL-2 and subsequently stained with antibodies specific 
for phosphorylated forms of STAT proteins. The fold increase of 

phospho-STAT1, phospho-STAT3 and phospho-STAT5 was cal-
culated from a variety of immune cells of 818 individuals, totaling 
96 conditions. We conducted multiple regression analysis control-
ling age, CMV and sex (Methods). Notably, there was a general 
decrease of B-cell and T-cell responses to stimuli and an overall 
potentiation of monocyte response associated with increasing 
iAge (combined P < 10−5; Fig. 2b). These results demonstrate that 
iAge correlates with an established biomarker of immune senes-
cence (naive CD8+ T-cell frequency) and with PBMC signaling 
responses in vitro.

CXCL9 is an important component of iAge and correlates with 
cardiovascular aging in healthy adults. To isolate the factors con-
tributing the most to iAge, we computed the most variable Jacobians 
(first-order partial derivative of iAge). We found both positive and 
negative contributors to iAge (Fig. 3a), where the top 15 most vari-
able Jacobians were CXCL9, EOTAXIN, Mip-1α, LEPTIN, IL-1β, 
IL-5, IFN-α and IL-4 (positive contributors) and TNF-related 
apoptosis-inducing ligand (TRAIL), IFN-γ, CXCL1, IL-2, trans-
forming growth factor (TGF)-α, plasminogen activator inhibitor 
(PAI)-1 and leukemia inhibitory factor (LIF) (negative contribu-
tors). Notably, canonical markers of acute infection such as IL-6 
and tumor necrosis factor-α were not major contributors to iAge, 
indicating that, except for IL-1β, infection-driven inflammatory 
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markers of the acute inflammatory response do not contribute to 
age-related chronic inflammation. Given that the most positive con-
tributor to iAge was CXCL9, we compared CXCL9 levels between 

different age groups and found significant increases in this protein 
with age (P < 10−15, by one-way analysis of variance (ANOVA) test) 
starting at the age of 60 years (Fig. 3b and Extended Data Fig. 6). 
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LIF and PWV (R = −0.27) (c) and RWT (R = −0.22) (d). P values are derived from hypothesis testing, where the null hypothesis is that the variable has no 
correlation with the dependent variable. e,f, Direct comparisons between CXCL9 and the two cardiovascular aging phenotypes (PWV (e) and RWT (f)) are 
depicted. No other variable included in the models had high co-linearity as suggested by variance inflation factors (VIF) <3 for each factor.
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Taken together, these results suggest that CXCL9 is an important 
factor in age-related chronic inflammation.

To validate these results and investigate the previously reported 
role CXCL9 in cardiovascular aging41–44, we conducted a follow-up 
study in an independent cohort of 97 extremely healthy adults (aged 
25–90 years) matched for cardiovascular risk factors (including con-
served levels of high-sensitivity C-reactive protein; Supplementary 
Table 1), selected from a total of 151 recruited participants using 
strict selection criteria (Methods). In this healthy cohort, inflam-
mation markers were measured using a 48-plex cytokine panel and 
only 6 out of 48 circulating immune proteins were significantly cor-
related with age (P < 0.05). Among these, CXCL9 was again the larg-
est contributor to age-related inflammation (Extended Data Fig. 7), 
supporting the findings observed in the 1KIP cohort. In addition, 
IL-11Rα, CXCL10 and hepatocyte growth factor (HGF) increased 
with age, whereas CXCL1 and LIF decreased (Extended Data Fig. 7).  
These changes were in the same direction as those observed in the 
1KIP cohort.

Individuals in the validation cohort were subjected to cardio-
vascular assessment, including pulse wave velocity (PWV) testing, 
a measure of vascular stiffness and relative wall thickness (RWT), 
a surrogate measure of cardiac remodeling (Methods). We then 
performed multiple regression hierarchical analysis using the six 
selected inflammatory markers associated with aging in this cohort 
and cardiovascular measurements (PWV and RWT) controlling for 
age, sex, BMI, heart rate, systolic blood pressure, fasting glucose 
and total cholesterol to high-density lipoprotein (HDL) ratio. At 
P < 0.01, we found a modest positive correlation between CXCL9 
and PWV (R = 0.22) and RWT (R = 0.3) (Fig. 3c–f). We also found 
a negative correlation between LIF and PWV (R = −0.27) and RWT 
(R = −0.22).

As high RWT indicates concentric cardiac remodeling and ele-
vated PWV is reflective of organ damage and predicts future car-
diovascular events and all-cause mortality better than conventional 
cardiovascular disease risk factors45–47, taken together, these results 
show that soluble blood markers CXCL9 and LIF could be used as 
early biomarkers to assess cardiovascular disease risk in otherwise 
healthy individuals.

CXCL9 increases with age in human blood endothelial cells. 
Long-standing evidence has suggested a role for the endothelium in 
the etiology of hypertension and arterial stiffness48,49. More recent 
work has also shown that advanced signs of cardiovascular aging 
such as tissue remodeling and cardiac hypertrophy are often pre-
ceded and may be initiated by the malfunctioning of aged endo-
thelia50–52. We explored the potential contribution of CXCL9 toward 
cardiovascular aging through endothelial cells. First, we assessed 
levels of CXCL9 in young and old individuals by isolating their 
blood endothelial progenitor cells (BECs) (Extended Data Fig. 8a). 
Quantitative PCR analysis of BECs from young and old individuals 
showed a significant increase in CXCL9 levels in older compared to 
younger subjects (Fig. 4b). Furthermore, a comprehensive charac-
terization of BECs from both cohorts showed impairment of endo-
thelial function in older individuals when compared to younger 
individuals. To measure endothelial function, we examined the 
endothelial cells’ (ECs) ability to form networks of tubular struc-
tures53,54, produce nitric oxide (NO)55 and incorporate acetylated 
low-density lipoprotein (Ac-LDL)56; together, the assays robustly 
assess the health of ECs. Comparing ECs from older and younger 
individuals, we found that BECs from older patients showed 
reduced capacity to form networks of tubular structures (Extended 
Data Fig. 8b and Fig. 4b), reduced capacity to produce NO (Fig. 4c) 
and a reduced capacity to incorporate Ac-LDL (Fig. 4d).

Similar experiments were conducted in mice. Aortas from young 
(3–4 months) and old mice (2 years) were excised, digested and cul-
tured in EC medium (Extended Data Figure 8c). Once confluent, 

ECs from both young and old mice were assessed for CXCL9 expres-
sion and function. As expected, ECs isolated from old mice showed 
higher levels of CXCL9 (Extended Data Fig. 8d), while at the same 
time showed impaired EC function as evident by decreased tube 
formation (Extended Data Fig. 8e,f). These results demonstrate a 
concomitant increase in CXCL9 in the endothelia and EC dysfunc-
tion associated with aging both in humans and mice.

Inhibition of CXCL9 rescues endothelial cell dysfunction. Next, 
we investigated how the increase in CXCL9 in older ECs is related 
to endothelial dysfunction. In these experiments, we used a well-
established model for endothelial aging57,58 by generating human 
induced pluripotent stem cells (hiPSCs) from fibroblasts obtained 
from five independent human donors59 and subsequently differenti-
ated them into endothelial cells (hiPSC-ECs)60. The CXCL9 recep-
tor, Gαi protein-coupled protein CXCR3, was expressed in ECs but 
not in cardiomyocytes (Extended Data Fig. 9). We used lentiviral 
infection of CXCL9 sequence-specific short hairpin (sh)RNA to 
knockdown expression of CXCL9 in hiPSCs (CXCL9-KD). As a 
control, we also infected hiPSCs with nonsense-sequence shRNA 
(Scramble) and subsequently, both cultures were differentiated 
to ECs. CXCL9 expression, as analyzed by quantitative PCR, was 
reduced by ~75% in CXCL9-KD hiPSC-ECs compared to Scramble 
hiPSC-ECs (not shown). CXCL9-KD and Scramble hiPSC-ECs 
were serially cultured to passage 8 in a time-course experiment to 
mimic cellular aging.

We then investigated the functional impact of the observed phe-
notype in a model for angiogenesis by measuring EC capacity to 
form networks of tubular structures54, the production of NO and 
uptake of Ac-LDL. iPSC-ECs at passage 8 showed significantly 
impaired tube formation when compared to early passages of iPSC-
ECs, including passage 0 and 2. As early as passage 4, ECs lose 
their capacity to form tubes, which can be partially restored when 
CXCL9 is knocked down (Fig. 4e and Extended Data Fig. 10). Next, 
we assessed the capacity of these early- or late-passaged iPSC-ECs 
to produce NO or uptake acetylated LDL. Late-passaged iPSC-
ECs failed to produce NO in response to acetylcholine or uptake 
Ac-LDL respectively, when compared to early passages of iPSC-ECs 
(Fig. 4f,g).

Notably, the knockdown of CXCL9 (CXCL9-KD) in iPSC-ECs 
rescued the EC dysfunction in late passages of iPSC-ECs (P6 and P8),  
suggesting an important role of CXCL9 and the EC phenotype. It 
is also noteworthy that when comparing tube formation, NO pro-
duction and uptake of Ac-LDL in Scramble at passage 0 versus 
CXCL9-KD at passage 8, there is a statistically significant difference 
in all three metrics (P < 0.01). This suggests that while knockdown 
of CXCL9 rescues endothelial dysfunction by passage 8, it cannot 
restore EC function completely to the level of healthy ECs at pas-
sage 0. Altogether, these results are consistent with previous find-
ings showing age-dependent endothelial dysfunction, fewer T cells 
and impaired vasodilation with advanced age in animal models, 
and requirement of angiogenesis in migration and proliferation of 
ECs61. Taken together these results demonstrate that CXCL9 has a 
profound effect in the cardiovascular system and indicates a new 
role for this chemokine in angiogenesis and EC function during car-
diovascular aging.

CXCL9 governs inflammation and proliferation in aged EC. In a 
time-course experiment where CXCL9-KD and Scramble hiPSC-
ECs were serially cultured to passage 8, RNA was also extracted 
at every other passage for bulk RNA-sequencing (RNA-seq) tran-
scriptome analysis (Methods). We observed a time-dependent 
increase in CXCL9 transcript levels up to ~fourfold at passage 8 
compared to cells obtained from cultures at day 0 and a substan-
tial reduction of CXCL9 expression in CXCL9-KD hiPSC-ECs 
(Fig. 5a). Fast gene set enrichment analysis (FGSEA) in aged cells 
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revealed upregulation of genes in hallmark inflammatory path-
ways and downregulation of genes in hallmark cell proliferation 
pathways (Fig. 5b). This profile is indicative of an early cellular 
senescence phenotype62–66. CXCL9-KD showed a complete rever-
sal of this early cellular senescence phenotype with upregulation 
of proliferative pathways and downregulation of inflammatory 
pathways when compared to Scramble hiPSC-ECs (Fig. 5c–e). 
Examples of these inflammatory and proliferation hallmark path-
ways include the IFN-γ response and E2F targets, respectively 
(Fig. 5d (Scramble) and Fig. 5e (CXCL9-KD)). Such functional 
impact of increased inflammation and decreased proliferation in 
endothelial aged cells could contribute to the impaired tube for-
mation and endothelial dysfunction observed in the experiments 
described previously.

CXCL9 impairs vascular function and contributes to arterial 
stiffness. To further explore the role of CXCL9 in cardiovascular 
aging in our in vitro EC aging model, we focused on molecules that 
are related to a surrogate of cardiovascular risk, arterial stiffness. 
EC dysfunction has been shown to strongly affect arterial stiffness 
via cellular adhesion molecules (CAMs), matrix metalloproteinases 
(MMPs) and collagen molecules (COLs)67–71. We compared gene 
expression levels of all CAM genes (n = 13), MMP genes (n = 12) 
and COL genes (n = 23) in Scramble hiPSC-ECs at passage 0 versus 
passage 8. We found a substantial upregulation of CAM, MMP and 
COL genes related to arterial stiffness at passage 8 (Fig. 6a). Except 
for some COL genes, this vascular stiffness gene profile is reversed 

in CXCL9-KD cells, which suggests that silencing of this single gene 
can restore the EC phenotype (Fig. 6b).

As genes related to arterial stiffness are upregulated in Scramble 
passage 8 but their expression is largely attenuated in CXCL9-KD, 
we hypothesized that there might be a causal effect between arterial 
stiffness and increase expression of CXCL9. To test this, we incu-
bated mouse thoracic aortic sections with increasing concentrations 
of recombinant mouse CXCL9 and assessed cellular contractibility 
by incubating vessels with the prostaglandin agonist U46619 and 
measured relaxation curves by isometric myography72. As shown in 
Fig. 6c, a dose-dependent effect of CXCL9 is observed on vasorelax-
ation in treated aortas versus controls, which validates our findings 
of the effect of CXCL9 on the arterial stiffness gene expression phe-
notypes. The same experiment was conducted in young versus old 
mice using only one dose of CXCL9 (1 ng ml−1). As seen in Fig. 6d, 
aortic rings excised from old mice showed impaired vascular relax-
ation when compared to young mice in response to acetylcholine. 
However, aortic rings from both young and old mice when incu-
bated with CXCL9 exhibited impaired vascular relaxation. These 
results demonstrate a central role for CXCL9 in vascular dysfunc-
tion, which likely contributes to arterial stiffness and premature 
aging in vivo.

Age-related elevation in CXCL9 leads to endothelial cell senes-
cence. The lack of angiogenesis, impaired production of NO and 
dysfunctional uptake of Ac-LDL indirectly suggested a cellular 
senescence phenotype that could be rescued by knocking down 
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Fig. 4 | CXCL9 is an important regulator of endothelial cell aging. a, Quantitative PCR data show increased expression of CXCL9 in BECs of older 
individuals compared to younger individuals (P = 0.0075). b, Significant differences in tube formation capacity are observed in BECs from older and 
younger individuals (P = 0.0323). c, Quantification of NO production shows impaired capacity of BECs from older individuals to produce NO when 
compared to younger individuals in response to acetylcholine (Ach) (adjusted P value (Padj) of BECs (young) versus BECs (old), P <0.0001; Padj value of 
BECs (young) Ach versus BECs (old) Ach, 0.0002). d, Quantification of LDL uptake show impaired capacity of BECs from older individuals to uptake Ac-
LDL when compared to younger individuals (Padj = 0.0002). e–g, Quantification of number of tubes, LDL uptake and NO production in response to Ach 
in Scramble and CXCL9-KD iPSC-ECs shows a significant improvement in aging phenotypes in ECs at passage 6 and 8 with silencing of the CXCL9 gene. 
Padj values for P6 (Scramble) versus P6 (CXCL9 shRNA) = 0.008 (e); P8 (Scramble) versus P8 (CXCL9 shRNA) = 0.0475. Padj values for P6 (Scramble) 
versus P6 (CXCL9 shRNA) = 0.044; P8 (Scramble) versus P8 (CXCL9 shRNA) = 0.001 (f). Padj values for P6 (Scramble) Ach versus P6 (CXCL9-KD) 
Ach = 0.0116; P8 (Scramble) Ach versus P8 (CXCL9-KD) Ach = 0.0001 (g). Scramble are hiPSCs infected with lentivirus carrying nonsense-sequence 
shRNA. CXCL9-KD are hiPSCs infected with lentivirus carrying sequence-specific shRNA to knockdown expression of CXCL9. All data are represented as 
mean ± s.e.m., n = 3, *P < 0.05, **P < 0.01, ***P < 0.001; ****P < 0.0001; NS, not significant. Statistical analyses were performed using Student’s t-test or 
one-way ANOVA corrected with the Bonferroni method.
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CXCL9 as iPSC-EC is passaged. To directly explore the role of 
CXCL9 in cellular senescence, we assessed the proliferation rate 
and cellular senescence markers in Scramble and CXCL9-KD iPSC-
ECs at different passages. First, we assessed the kinetic profile of 
iPSC-ECs from Scramble and CXCL9-KD cells every 24 h for up to 
4 d. Briefly, equal numbers of Scramble and CXCL9-KD iPSC-ECs 
from passage 0 and passage 8 were seeded in a 96-well plate and 
cells were quantified using a Cytation five-cell imaging multimode 
reader, where individual cells were counted every 24 h by imaging 
4′,6-diamidino-2-phenylindole (DAPI)-positive cells. As seen in 
Fig. 7a, the kinetic profile of iPSC-EC proliferation over 4 d showed 
a significant increase in the proliferation rate in P0 iPSC-ECs when 
compared to P8 iPSC-ECs. Notably, when CXCL9 was inhibited in 
P8 iPSC-ECs (CXCL9-KD), the proliferation rate showed a signifi-
cant increase when compared to Scramble-treated cells.

Next, we assessed the senescence-associated β-galactosidase 
(SA-β-gal) activity in Scramble or CXCL9-KD iPSC-ECs at different 

passages to determine cellular senescence in these cells. Cell lysates 
were collected and SA-β-gal activity measured using a standard 
fluorometric substrate. As expected, Scramble iPSC-ECs showed 
a passage-dependent increase in SA-β-gal activity, suggesting an 
increase in cellular senescence. However, in CXCL9-KD iPSC-ECs 
the SA-β-gal activity at later passages was significantly reduced 
when compared to Scramble, suggesting a direct link between 
CXCL9 expression and cellular senescence (Fig. 7b).

Finally, we examined the capacity of Scramble and CXCL9-KD 
iPSC-ECs to form capillaries in vivo when injected subcutaneously 
in immunodeficient mice73. Early and late-passaged iPSC-ECs from 
both Scramble and CXCL9-KD groups were placed in Matrigel 
and injected subcutaneously into the lower abdominal region of 
SCID mice. Following 2 weeks, Matrigel plugs were excised, fixed 
and stained for human CD31. As seen in Fig. 7c, immunohisto-
chemical images showed formation of capillaries in Scramble and 
CXCL9-KD iPSC-ECs at P0; however, P8 (late passaged) Scramble 
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iPSC-ECs failed to show sprouting in vivo (Fig. 7c,d). In contrast, 
P8 CXCL9-KD iPSC-ECs showed significantly improved in vivo 
angiogenesis, suggesting a critical role of CXCL9 in EC senescence.

Discussion
In this study, we conducted extensive immune monitoring in a 
large cohort of 1,001 individuals to identify immune biomarkers of 
aging and establish reference values for age-related systemic chronic 
inflammation. We used artificial intelligence to create a compact 

representation of these biomarkers and derived an ‘inflammatory 
clock’ of aging, which takes into account the nonlinear relationship 
and redundancy of the cytokine network. This metric tracked with 
multiple aging phenotypes in the general population and thus, has 
strong potential for translational medicine, as it could be used as a 
diagnostic tool for identifying those at risk for both noncommuni-
cable and infectious diseases.

Our nonlinear GAE method was optimal for the identification 
of iAge and its contributors. As with other deep-learning methods, 
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GAE is capable of capturing complex relationships between ana-
lytes. Similar methods striving to extract signatures of aging have 
been described in different systems ranging from genome-wide 
association studies to proteomics. We summarize a few notable 
aging clocks in Supplementary Table 3. In brief, an epigenetic clock 
using markers measuring DNA methylation on CpG sites has been 
used to calculate an epigenetic age that was able to predict all-cause 
mortality74,75. It has also been associated with age-related diseases 
such as frailty, Alzheimer’s disease, Parkinson’s disease and cancer. 
Other clocks such as transcriptomic and microRNA clocks have 
also been shown to successfully capture aspects of the aging process 
that are different from epigenetic clocks. Instead of being associ-
ated with all-cause mortality or disease, transcriptomic clocks are 
associated with IL-6, albumin, lipids and glucose levels76. There 
have also been attempts to derive proteomic clocks and metabolo-
mic clocks77–82 of clinical relevance; however, iAge allows for new 
discoveries in the immune system. iAge derived from immunologi-
cal cytokines gives us an insight into the salient cytokines that are 
related to aging and disease. A notable difference compared to other 
clocks is that iAge is clearly actionable as shown by our experiments 
in CXCL9 where we can reverse aging phenotypes. More practical 
approaches range from altering a person’s exposomes (lifestyle) and 
or the use of interventions to target CXCL9 and other biomarkers 
described here.

Recent advancements in deep learning beyond traditional 
machine-learning methods have provided enormous opportu-
nities to model biological age. Some of the most popular deep-
learning architectures used to estimate biological age have been 
recurrent neural networks (RNNs), convolutional neural networks 
(CNNs), generative adversarial networks (GANs) and deep artifi-
cial neural networks (ANNs). RNNs have been used on face attri-
butes and physical activities to estimate biological age83. Although 
the modality is not in the realm of biological markers, RNNs have 
potential to garner results in biological data that require posi-
tional relationships such as epigenetic age. CNNs and GANs have 
both been used to abstract facial attributes to predict chronologi-
cal age84,85. GANs and CNNs are exceptional in abstracting images 
to distill useful information. Future applications of GANs and 
CNNs can be applied in other biological images such as magnetic 
resonance imaging; however, for now, these models are proof 
of concepts that they can accurately estimate cAge; they might 
not necessarily predict the health or lifespan of individuals. The 
deep-learning models that have been applied to modality used in 
this paper are the deep ANNs. ANNs have been applied to blood 
biochemistry markers and cell counts to derive biological age86,87. 
The results showed that such clocks are able to predict all-cause 
mortality, potentially finding biomarkers to intervene and steer 
individuals toward a healthier life.
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4) = 0.0232). b, Cellular senescence activity assay shows restoration of SA-β-gal activity in CXCL9-KD iPSC-ECs at later passages when compared to 
Scramble iPSC-ECs (Padj value of P6 (Scramble) versus P6 (CXCL9 shRNA) = 0.0406; Padj value of P8 (Scramble) versus P8 (CXCL9 shRNA) = 0.0278). 
c, Representative immunohistochemical images showing CD31+ human capillaries from serially passaged Scramble and CXCL9-KD iPSC-ECs. Arrows 
denote CD31 staining on iPSC-EC indicating capillary formation. d, Quantification of CD31+ capillaries show improved capacity of late passaged CXCL9-KD 
iPSC-ECs to form in vivo capillary networks (Padj value of P0 (Scramble) versus P8 (Scramble) <0.0001; Padj value of P8 (Scramble) versus P8 (CXCL9 
shRNA) = 0.0487). All data are represented as mean ± s.e.m., n = 3, *P < 0.05, ****P < 0.001. Statistical analyses were performed using one-way ANOVA 
corrected with the Bonferroni method. Scale bars, 100 μm.
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Some of the limitations of biological clocks in general is that they 
do not directly provide the mechanism by which they work. While 
it is possible to infer causality between aging and molecular bio-
markers especially in the context of longitudinal or time-series data, 
individual biomarkers selected from biological aging clocks need to 
be experimentally tested to elucidate the underlying mechanism, as 
we have done in this study. Our GAE algorithm, a deep-learning 
method that efficiently deals with the network structure and non-
linear behavior of the inflammatory response, can extract high-level 
complex abstractions as ‘data representations’ using nonlinear func-
tions and is well suited for the analysis of complex systems where 
most behaviors are nonlinear, context-dependent and organized in 
a distributed hierarchical fashion88. In our case, this method out-
performed other commonly used linear modeling methods such 
as Elastic Net and PCA and also other nonlinear approaches such 
as plain auto-encoder89 (Extended Data Fig. 3b). The correlation 
between chronological age and iAge was 0.78 (P < 10−16) (Fig. 1a), 
which is lower than that of the recently reported ‘proteomic age’ 
metric (R = 0.92)90. However, in contrast with proteomic age, which 
did not report disease associations, we find that iAge tracks with 
multiple diseases and immunosenescence. In particular, we find a 
strong association between elevated iAge and poor acute ex vivo 
immune responses, which is consistent with previous reports show-
ing that high levels of baseline inflammatory markers correlate with 
weaker responses to hepatitis B and herpes zoster vaccine formu-
lations15,91. Similarly, inflammatory markers have been shown to 
be, at least in part, responsible for a reduced JAK–STAT response 
to cytokine stimulations in various leukocyte populations in our 
previous studies of aging28. Despite the proven utility of cytokine 
stimulation assays used in our study with respect to an individual’s 
overall immune competence5,24,25, one limitation of the assay relates 
to the stimuli used here which may not completely mirror the physi-
ological stimuli that act on specific immune cell subsets in vivo. For 
example, while the stimuli we used strongly activate the memory 
compartment of bulk CD8+ and CD4+ T cells, these act relatively 
weakly on naive T cells. Additional cell subsets that are poorly acti-
vated by the cytokines used in our study are type 1 helper T cells 
CD4+ T cells that can be activated by IL-12 and IL-18 or type 17 
helper CD4+ T cells, which respond to other cytokine stimulations 
such as IL-1β or IL-18 in concert with IL-23 to produce type 17 
helper T-cell-associated cytokines.

Recent findings from our group16,28 placed the immune system 
in the center of aging phenotypes. Similar to our previous findings, 
our inflammatory clock metric specifically hones in on the crucial 
role that the immune system and SCI play in the accumulation 
of diseases of aging, with a focus on cardiovascular aging. Unlike 
other metrics of ‘biological’ age, which do not offer a clinically rel-
evant metric92, we demonstrate that iAge predicts multimorbidity 
and mortality and therefore can be used as a biological surrogate 
of age-related health versus disease. iAge is directly associated with 
multiple disease phenotypes, including cardiovascular aging, frailty, 
immune decline and exceptional longevity. In our recent work16, we 
combined cellular phenotypes to describe subject- and population-
level immune aging phenotypes (IMM-AGE), which correlated 
with iAge. This suggests that future research should leverage both 
immune-age scores to propose a unified metric that reflects mul-
tiple aspects of immune aging, thus potentially providing a better 
clinical predictive value.

A major contributor to the inflammatory clock, CXCL9, was 
validated as an indicator of cardiovascular pathology independently 
of age. CXCL9 is a T-cell chemoattractant induced by IFN-γ and 
is mostly produced by neutrophils, macrophages and ECs. Despite 
previous data showing that CXCL9 and other CXCR3 ligands are 
significantly elevated in hypertension and in patients with left ven-
tricular dysfunction41, we find that CXCL9 is mainly produced by 
aged endothelium and predicts subclinical levels of cardiovascular 

aging in nominally healthy individuals. Some studies in humans 
have found CXCL9 to increase with age93–98 and an age-dependent 
profile has also been observed in Chagas disease99 and atopic der-
matitis100. Notably, CXCL9 has also been shown to be associated 
with falls in the older population101,102, which parallels our results 
predicting frailty. At least two sources of CXCL9-mediated inflam-
mation can ensue with aging based on our findings; one that is age-
intrinsic and observed in aging ECs and one that is independent of 
age (likely as a response to cumulative exposure to environmental 
insults) and found in the validation cohort of 97 apparently healthy 
adults. Notably, we did not find any significant correlation between 
known disease risk factors reported in the study (BMI, smoking, 
dyslipidemia) and levels of CXCL9 gene or protein expression. 
We thus hypothesize that one root cause of CXCL9 overproduc-
tion is cellular aging per se, which can trigger metabolic dysfunc-
tion (as shown in many previous studies of aging) with production 
of DAMPs. Examples of these include adenosine, adenine and 
N4-acetylcytidine as demonstrated in our previous longitudinal 
studies of aging5. These DAMPs can then act through the inflam-
masome machinery, such as NLRC4, to regulate multiple inflamma-
tory signals, including IL-1β and CXCL9 (ref. 103).

Our data also place the endothelium as a central player in car-
diovascular aging, consistent with previous findings104 and they 
also suggest that ECs may be one source of inflammation, but it 
is also possible that cardiomyocytes play a role as in models of 
acute myocardial infarction there is activation of the inflamma-
some NLRP3 in these cells105,106. As ECs but not cardiomyocytes 
expressed the CXCL9 receptor, CXCR3 (Extended Data Fig. 9), 
we hypothesize that this chemokine acts both in a paracrine fash-
ion (when it is produced by macrophages to attract T cells to the 
site of injury) and in an autocrine fashion (when it is produced by 
the endothelium) creating a positive feedback loop. In this model, 
increasing doses of CXCL9 and expression of its receptor in these 
cells leads to cumulative deterioration of endothelial function in 
aging. Moreover, silencing of CXCL9 in ECs resulted in a reversal 
of the high inflammation/low proliferation early senescence phe-
notype, which suggests by tackling CXCL9 it may be possible to 
delay onset of EC senescence. It is also notable that IFN-γ, a direct 
agonist to CXCL9, did not increase in expression in our cellular 
aging RNA-seq experiment, suggesting that there are triggers of 
CXCL9 (other than IFN-γ) that play a role in cellular senescence 
in the endothelium that are currently unknown. However, in our 
1KIP study, IFN-γ was in fact the second-most important nega-
tive contributor to iAge, which could be explained by the cell-
priming effect of cytokines, where the effect of a first cytokine 
alters the response to a different one107–109. In a more recent and 
refined version of this model (the high baseline-low output model 
for chronic inflammation and the acute response) we show that 
sustained levels of inflammatory mediators lead to nonfunctional 
constitutive phosphorylation of signaling pathways with satura-
tion of phosphorylation sites in signaling proteins (such as the 
JAK–STAT system), which results in a lowered δ phosphorylation 
in response to acute stimuli and subsequent dampening of the 
immune response to infections or vaccination28.

In conclusion, by applying artificial intelligence methods to deep 
immune monitoring of human blood we generate an inflammatory 
clock of aging, which can be used as a companion diagnostic to 
inform physicians about patient’s inflammatory burden and overall 
health status, especially in those with chronic diseases. Furthermore, 
our immune metric for human health can identify within healthy 
older adults with no clinical or laboratory evidence of cardiovas-
cular disease, those at risk for early cardiovascular aging. Lastly, we 
demonstrate that CXCL9 is a master regulator of vascular function 
and cellular senescence, which indicates that therapies targeting 
CXCL9 could be used to prevent age-related deterioration of the 
vascular system and other physiological systems as well.
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Methods
Ethics declaration. ClinicalTrials.gov identifiers for the vaccine studies are 
NCT01827462, NCT02133781, NCT03020498, NCT03020537, NCT01987349, 
NCT03022396, NCT03022422, NCT03022435, NCT03023176 and NCT02141581. 
This study was conducted in accordance with current relevant ethical regulations 
on human participant research. Written informed consent was obtained from 
all the study cohorts used and the study protocol was approved by the Stanford 
University Administrative Panels on Human Subjects in Medical Research, 
Institutional Review Board.

The Stanford 1000 Immunomes study cohort. The Stanford 1KIP consists of 
1,001 ambulatory individuals (339 males and 662 females) recruited at Stanford 
University between the years 2007 and 2016 for various studies of aging and 
vaccination (n = 605)5,21–29 and for an independent study of chronic fatigue 
syndrome30, from which we utilized data from the control set of participants only 
(n = 397). The current study uses blood samples collected before vaccination and 
where results of the flu vaccine trial have been published24.

Aging and vaccination study cohort. Study participants were enrolled in an 
influenza vaccine study at the Stanford-LPCH Vaccine Program between 2007 and 
2016. Baseline samples were obtained from all individuals before vaccination with 
influenza vaccine. The protocol for this study was approved by the Institutional 
Review Board of the Research Compliance Office at Stanford University. Informed 
consent was obtained from all participants. All individuals were ambulatory. 
At the time of initial enrollment volunteers had no acute systemic or serious 
concurrent illness, no history of immunodeficiency, nor any known or suspected 
impairment of immunologic function, including clinically observed liver disease, 
diabetes mellitus treated with insulin, moderate to severe renal disease, blood 
pressure >150/95 at screening, chronic hepatitis B or C or recent or current use of 
immunosuppressive medication. In addition, on each annual vaccination day, none 
of the volunteers had been recipients or donors of blood or blood products within 
the past 6 months and 6 weeks, respectively and none showed any signs of febrile 
illness on the day of baseline blood draw. Peripheral blood samples were obtained 
from venipuncture and mononuclear cells were separated and stored at the 
Stanford Clinical and Translational Research Unit. Whole blood was used for gene 
expression analysis. Serum was separated by centrifugation of clotted blood and 
stored at −80 °C before CMV serology, cytokine and chemokine determination.

Chronic Fatigue Syndrome Study cohort. Study participants were recruited from 
Northern California from 2 March 2010 to 1 September 2011. Their peripheral 
blood was drawn between 8:30 am and 3:30 pm on the day of enrollment. Samples 
were collected at baseline for each participant (no exercise before blood sampling). 
In addition, as each patient with myalgic encephalomyelitis (ME)/chronic fatigue 
syndrome (CFS) was being recruited into the study, two corresponding, age and 
sex-matched controls, were contemporaneously enrolled until the target sample 
size of 200 patients and 400 controls was obtained. This approach resulted in 
patients and controls being intercalated in their time of entry into the study. Eight 
milliliters of blood were drawn into a red-topped serum tube (Thermo Fisher 
Scientific) by the Clinical and Translational Research Unit’s phlebotomy team. 
Serum was obtained by allowing blood to clot for 40 min. Once clotted, the blood 
tube was centrifuged in a refrigerated (4 °C) centrifuge (Allegra X-15R, Beckman 
Coulter) at 2,000g for 15 min. Serum was isolated and mixed thoroughly in a tube 
using a 2-ml sterile, serological pipette (Thermo Fisher Scientific) to obtain a 
homogenous solution before dispensing to storage tubes. Serum was distributed 
into aliquots per the Stanford HIMC (http://iti.stanford.edu/himc.html) aliquot 
guidelines and frozen at −80 °C. For the day of the cytokine assay, matched sets 
of patients with ME/CFS and healthy controls were mixed in all plates to reduce 
confounding case status with plate artifacts. In summary, patients with ME/CFS 
and controls were treated identically in terms of recruitment and serum handling 
protocols. To be included in the CFS Study, participants had to be 14 years of age 
or older, reside in Northern California and provide written informed consent 
and Health Insurance Portability and Accountability Act of 1996 authorization 
as required by the Stanford University Institutional Review Board (protocol nos. 
18068 and 18155). Only healthy controls were used for this study.

Validation cohort and centenarians. A total of 37 individuals were enrolled by 
two Italian study centers (Bologna and Florence) and surrounding areas. The group 
of centenarians consisted of 19 individuals (10 men, mean age 102.8 ± 2.3 years 
and 9 women, mean age 103.7 ± 2.6 years) and the group of controls consisted of 
18 individuals (9 men, mean age 64.8 ± 7.9 years and 9 women, mean age 67.1 ± 7.3 
years). The lists of individuals recruited here were obtained by the Office of 
Vital Statistics. All participants signed informed consent before undergoing the 
questionnaires (functional and cognitive status, depression, self-perceived health), 
measurements (anthropometric measures, blood pressure, physical performance) 
and blood sampling. History of past and current diseases was accurately collected 
by checking the participants’ medical documentation and addressing major age-
related pathologies. The current use of medication (including inspection of drugs 
by the interviewer) was recorded. The study protocol was approved by the Ethical 
Committee of Sant’Orsola-Malpighi University Hospital. Overnight fasting blood 

samples were obtained in the morning. Plasma was obtained within 2 h from 
venipuncture by centrifugation at 2,000g for 20 min at 4 °C, rapidly frozen and 
stored at −80 °C.

Cardiovascular Study cohort. After approval by Stanford’s Institutional 
Review Board, 151 individuals participating in the National Institute of Health 
sponsored 5 U19 AI05086 Study and Stanford Cardiovascular Institute Aging 
Study were screened for inclusion in this study. The screening process included 
a comprehensive health questionnaire, including the London School of Hygiene 
cardiovascular questionnaire. Exclusion criteria included history of acute or 
chronic illness such as atherosclerosis, systemic hypertension, diabetes mellitus 
or dementia, familial history of early cardiovascular disease (<55 years old), 
on nonsteroidal anti-inflammatory drugs or on inhaled steroids on a regular 
basis, history of malignancies, history of surgery within the last year, history of 
atopic skin disease, history of infection within the last 3 months, including upper 
respiratory infections or urinary infections and history of vaccination within the 
past 3 months. Patients older than 80 years who had a previous history of mild 
systemic hypertension but with normal blood pressure at the time of the visit 
(blood pressure <140/90 mm Hg) were not excluded from the study. On the basis 
of the inclusion and exclusion criteria, 97 individuals were included in the study. 
We divided the patients into four groups according to pre-specified age boundaries 
(25–44, 45–59, 60–74 and 75–90 years old).

Human iPSC generation and culture. Protocols for isolation and use of patient 
blood were approved by the Stanford University Human Subjects Research 
Institutional Review Board. The iPSCs were generated using the OSKM CytoTune-
iPS 2.0 Sendai Reprogramming kit viral particle factors (Life Technologies). 
Colonies that resembled human embryonic stem cell-like morphology were picked 
and seeded at one colony per 12-well plate well (Matrigel coated) in E8 medium 
supplemented with 10 μM Y27632. iPSCs used for this study were at passage 
20–25. Details regarding the characterization of human iPSCs have been previously 
published110.

Human iPSC differentiation to endothelial cells. Human iPSCs (hiPSCs) were 
seeded on Matrigel plates and grown in hiPSC medium for 4 d to 75–80% 
confluency. Differentiation to ECs was initiated by treating the hiPSCs with 
6 μM CHIR99021 in RPMI-B27 without insulin medium (Life Technologies) for 
2 d, followed by another treatment of 2 μM CHIR99021 in RPMI-B27 without 
insulin medium for 2 d. Following these treatments, differentiating hiPSCs were 
subjected to endothelial medium EGM2 (Lonza) supplemented with 50 ng ml−1 
vascular endothelial growth factor (VEGF), 20 ng ml−1 BMP4 and 20 ng ml−1 basic 
fibroblast growth factor for 7 d, with the medium being changed every 2 d. On 
day 12, induced ECs were isolated using magnetic-activated cell sorting (MACS), 
where cells were first dispersed by trypsin, then incubated with CD144 antibody 
and finally passed through a MACS column containing CD144-conjugated 
magnetic microbeads (Miltenyi Biotec). The sorted cells were then seeded on 
0.2% gelatin-coated plates and maintained in EGM2 medium supplemented with 
10 µM SB431542 (TGF-β inhibitor). hiPSC-ECs were passaged on confluence and 
maintained in EGM2 medium.

In vitro monolayer cardiomyocyte differentiation of human iPCSs. To induce 
cardiomyocyte differentiation, approximately 1 × 105 undifferentiated hiPCSs 
were seeded in each well of Matrigel-coated six-well plates and cultured in 
differentiation medium111,112. Glucose-free MEM-α supplemented with fetal bovine 
serum (FBS) and lactate was employed to enrich cells to 98.0% α-actinin-positive 
at 37 °C, 20% O2 and 5% CO2 in a humidified incubator with a change of medium 
every 48 h and cells were passaged once they reached 80–90% confluence. The 
hiPSC-induced cardiomyocytes were treated immediately after enrichment.

Cell lines. Human umbilical vein ECs were purchased from Lonza and cultured in 
EGM2 medium (Lonza) with changes of the medium every 2 d. Human fibroblasts 
were purchased from ScienCell Research Lab and cultured in Dulbecco’s modified 
Eagle’s medium (Gibco), supplemented with 20% FBS and 1% filter-sterilized 
penicillin–streptomycin.59.

Cardiovascular phenotyping. Cardiovascular age was assessed using three 
parameters: (1) aortic PWV, a measure of vascular stiffness; (2) RWT, a measure 
of ventricular remodeling and (3) early diastolic mitral annular velocities (e′), 
a measure of ventricular relaxation. In addition, we measured the ratio of 
early mitral inflow velocity (E) to e′, a surrogate marker of end-diastolic filling 
pressures113,114.

Aortic PWV was calculated as the ratio of the pulse wave distance (in meters) 
to the transit time (in seconds). A 9.0-MHz Philips linear array probe was used to 
assess the carotid arteries (main common, bulb and internal carotid artery) and 
proximal femoral arteries. Pulse wave distance (D) was measured as the distance 
from the sternal notch to the femoral artery (xdirect) from which we subtracted the 
distance from the sternal notch to proximal descending aorta (D = xdirect − xnotch−aorta).  
The intersecting tangent method was used to measure the time from a reference 
echocardiograph signal and the foot of the pulse wave. Heart rate had to be within 
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2 b.p.m. between the carotid and femoral signal. All Doppler signals were recorded 
at 150 mm s−1. Inter-observer variability was calculated on 50 samples in our 
laboratory and the intraclass correlation coefficient was 0.94 for PWV measured by 
two independent observers (independent measures of path length and  
transit time).

Echocardiographs were performed using the Philips IE33 system according 
to recommendations115. All studies were interpreted by one physician (F.H.) who 
was blinded to age as well as clinical and biological data. All parameters were 
measured in triplicate and averaged. Ventricular dimensions and wall thickness 
were measured using M-mode derived measures; we excluded the septal band 
from the measurement of the septum and chordates from the measurements of 
the posterior wall. RWT was calculated as the sum of the septal and posterior wall 
divided by left ventricular internal dimensions. Ventricular mass was estimated 
using the American Society of Echocardiography’s recommended formula based 
on modeling the left ventricle as a prolate ellipse115. Left ventricular ejection 
fraction was estimated using the Simpson biplane method. The tissue Doppler e′ 
velocity represents an average of the septal and lateral annulus113,114. Inter-observer 
variability was calculated on 50 samples; the intraclass correlation in our laboratory 
is 0.93 for left ventricle mass measurements.

Induced human pluripotent stem cell-derived cardiomyocytes and endothelial 
cells. We derived iPSCs from five healthy individuals and cell lines passed common 
assessments for pluripotency such as expression of pluripotent markers (Oct4 and 
Nanog) and genomic stability such as karyotyping. These iPSCs were differentiated 
into cardiomyocytes to purities of >85% and ECs to purities of >90%. iPSC 
cardiomyocytes were differentiated on day 30 and iPSC-ECs were differentiated on 
day 14. Both types of cells expressed mature cell markers such as PECAM1 for ECs 
and MYH6 for cardiomyocytes.

Real-time PCR. To analyze gene expression of CXCR3, RNA was isolated using 
a RNeasy Plus kit (QIAGEN), complementary DNA was produced using a High-
Capacity RNA-to-cDNA kit (Life Technologies) and real-time PCR was performed 
using TaqMan Gene Expression Assays, TaqMan Gene Expression Master Mix and 
a StepOnePlusTM Real-Time PCR System (Life Technologies). All PCR reactions 
were performed in triplicate, normalized to the GAPDH endogenous control gene 
and assessed using the comparative Ct method.

To analyze the gene expression pattern for CXCL9, RNA was extracted using 
a QIAGEN RNA isolation kit (QIAGEN 74104) and cDNA was synthesized using 
qScript cDNA SuperMix (QuantaBio). Real-time PCR was performed using 
TaqMan Gene

We used expression assays (GAPDH, Hs02758991_g1, CXCL9, Hs00171065_
m1), TaqMan Master Mix using a 7900HT Real-Time PCR System (Thermo Fisher 
Scientific). All PCR reactions were performed in triplicate, normalized to the 
GAPDH housekeeping gene and assessed using the ΔΔCt relative quantification 
method.

RNA sequencing. To understand the gene expression landscape in aging iPSC-
ECs, we performed bulk RNA-seq on iPSC-ECs at different passages including 
P0, P2, P4, P6 and P8 iPSC-ECs. Similarly, to confirm our findings that aging ECs 
express elevated levels of CXCL9 and its downstream effects, we included CXCL9-
KD hiPSC-ECs for RNA sequencing. Briefly, Scramble or CXCL9-KD hiPSCs 
were differentiated to ECs using our established protocol and once sorted, iPSC-
ECs were collected at these specific passages for RNA extraction. Total RNA was 
extracted using an RNeasy mini kit (QIAGEN) and shipped to Novogene for RNA 
sequencing, where RNA samples were converted into individual cDNA libraries 
(250–300-bp insert cDNA library). TruSeq methods used single reads of 50 base 
lengths sequenced at 20–30 million read depths with the use of the Illumina 
Platform PE150. Trimmed sequences were generated as FASTQ outputs and 
mapped to the human reference genome (hg38) using HISAT2 and raw counts of 
transcripts were obtained using featureCounts. The counts were further imported 
to R-studio as input for normalization and differential expressed gene analysis 
using DESeq2. The R package, FGSEA, was used to conduct pathway enrichments 
using Hallmark gene sets from the Broad Institute’s MSigDB collections116.

Vascular tube-like formation. The functions of the generated hiPSC-ECs were 
characterized in angiogenic assays and compared to hiPSCs. The generated hiPSC-
EC were assessed for their ability to form tube-like structures by seeding 1 × 104 
cells in wells coated with Matrigel (Corning Matrigel Matrix) containing EGM2 
medium supplemented with 50 ng ml−1 VEGF and incubated for 16–24 h.

Isometric tension recordings. Mouse thoracic aortas were carefully dissected and 
the vessels were transferred to a dish with ice-cold Krebs solution (in mmol l−1, 133 
NaCl, 4.6 KCl, 2.5 CaCl2,16.3 NaHCO3, 1.75 Na2HPO4, 0.6 MgSO4, 10 glucose). 
The vessels were cut into small rings and mounted on an isometric wire myograph 
chambers (Danish Myo Technology) and subjected to a normalization protocol. 
Following normalization, vessels were incubated with either PBS or different 
concentrations of recombinant mouse CXCL9 protein (R&D systems, catalog no. 
492-MM) for 3–4 h. A concentration-dependent contraction curve was created 
by the cumulative application of the prostaglandin agonist U46619. Subsequently, 

concentration-dependent relaxation curves of acetylcholine were conducted on 
these vessels and percentage relaxation was calculated for each dose.

CXCL9 knockdown. Gene knockdown experiments were performed using the 
GIPZ CXCL9 shRNA Viral Particle Starter kit (Dharmacon) containing a pool of 
select shRNA. These included V3LHS_368350 (TAGACATGTTTGAACTCCA), 
V3LHS_409682 (AGTTATATACTGTCTACCT) and V3LHS_409683 
(AGAAGAACAAAGACAATCA). The multiplicity of infection of CXCL9 shRNA 
was assessed after 72 h of infection by puromycin selection and green fluorescent 
protein analysis according to the manufacturer’s instructions. iPSCs were 
transfected with CXCL9 shRNA lentivirus at a multiplicity of infection >0.9 and 
knockdown efficiency was measured by real-time PCR with reverse transcription.

Whole-blood gene expression. Five hundred nanograms of high-quality total 
RNA was used for the Illumina gene expression microarray (HumanHT-12 
BeadChip, v4) experiment. The Illumina Direct Hyb labeling method performs 
3′-based gene expression measurements through reverse transcription and in vitro 
transcription techniques that incorporate biotin-labeled nucleotides into nascent 
products. Labeled cRNA products are hybridized onto bead arrays, washed and 
stained with streptavidin-Cy3. Each array on the HumanHT-12 BeadChip targets 
>25,000 annotated genes with >48,000 probes. Hybridization and scanning 
was performed using the Illumina BeadArray reader at the Stanford Functional 
Genomics Facility as described in the Whole-Genome Gene Expression Direct 
Hybridization Assay Guide (catalog no. BD-901-1002, 11322355 rev. A). Data were 
extracted using the Illumina BeadStudio for further analysis.

Selecting the most important genes predictive of iAge. iAges were calculated 
for our cohort. In that cohort, 397 individuals had gene expression data. We 
regressed iAge onto gene expression data using a LASSO regression (glmnet R)117 
and implemented 100 of such regressions. Due to the stochastic nature of LASSO 
regression, each implementation produced a slightly different list of genes that 
were predictive of iAge. For the final list of selected genes, we filtered for genes that 
were selected 100 out of 100 times from the regressions.

Flow cytometry immunophenotyping. This assay was performed by the HIMC 
at Stanford University. PBMCs were thawed in warm medium, washed twice and 
resuspended at 1 × 107 viable cells ml−1. Then, 50 µl cells per well were stained for 
45 min at room temperature with the relevant antibodies (all reagents from BD 
Biosciences). Cells were washed three times with FACS buffer (PBS supplemented 
with 2% FBS and 0.1% sodium azide) and resuspended in 200 µl FACS buffer. 
Then, 100,000 lymphocytes per sample were collected using DIVA 6.0 software 
on an LSRII flow cytometer (BD Biosciences). Data analysis was performed using 
FlowJo v.9.3 by gating on live cells based on forward versus side-scatter profiles, 
then on singlets using forward scatter area versus height, followed by cell subset-
specific gating.

Phosphoepitope flow cytometry (cytokine stimulation, pSTAT readouts). 
This assay was performed by the HIMC at Stanford University. PBMCs were 
thawed in warm medium, washed twice and resuspended at 0.5 × 106 viable 
cells ml−1. Then, 200 µl of cells were plated per well in 96-well deep-well plates. 
After resting for 1 h at 37 °C, cells were stimulated by adding 50 µl of cytokine 
(IFN-α, IL-6, IL-10 or IL-2) and incubated at 37 °C for 15 min. PBMCs were 
then fixed with paraformaldehyde (PFA), permeabilized with methanol and 
stored at −80 °C overnight. Each well was barcoded using a combination of 
Pacific Orange and Alexa-750 dyes (Invitrogen) and pooled in tubes. Cells were 
washed with FACS buffer (PBS supplemented with 2% FBS and 0.1% sodium 
azide) and stained with the following antibodies (all from BD Biosciences): CD3 
Pacific blue, CD4 PerCP-Cy5.5, CD20 PerCp-Cy5.5, CD33 PE-Cy7, CD45RA 
Qdot 605, pSTAT-1 AlexaFluor488, pSTAT-3 AlexaFluor647 and pSTAT-5 PE. 
The samples were then washed and resuspended in FACS buffer. Then, 100,000 
cells per stimulation condition were collected using DIVA 6.0 software on an 
LSRII flow cytometer (BD Biosciences). Data analysis was performed using 
FlowJo v.9.3 by gating on live cells based on forward versus side-scatter profiles, 
then on singlets using forward scatter area versus height, followed by cell  
subset-specific gating.

CyTOF immunophenotyping. This assay was performed in the HIMC at Stanford 
University. PBMCs were thawed in warm medium, washed twice, resuspended in 
CyFACS buffer (PBS supplemented with 2% BSA, 2 mM EDTA and 0.1% sodium 
azide) and viable cells were counted by Vi-cell. Cells were added to a V-bottom 
microtiter plate at 1.5 × 106 viable cells per well and washed once by pelleting and 
resuspension in fresh CyFACS buffer. The cells were stained for 60 min on ice with 
50 µl of the relevant antibody–polymer conjugate cocktail. All antibodies were from 
purified unconjugated, carrier-protein-free stocks from BD Biosciences, BioLegend 
or R&D Systems. The polymer and metal isotopes were from DVS Sciences. The 
cells were washed twice by pelleting and resuspension with 250 µl FACS buffer. 
Cells were resuspended in 100 µl PBS buffer containing 2 µg ml−1 live-dead  
(DOTA-maleimide (Macrocyclics) containing natural-abundance indium).  
The cells were washed twice by pelleting and resuspension with 250 μl PBS.  
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The cells were resuspended in 100 µl 2% PFA in PBS and placed at 4 °C overnight. 
The next day, cells were pelleted and washed by resuspension in fresh PBS. Cells 
were resuspended in 100 µl eBiosciences permeabilization buffer (1× in PBS) and 
placed on ice for 45 min before washing twice with 250 µl PBS. If intracellular 
staining was performed, cells were resuspended in 50 µl antibody cocktail in 
CyFACS for 1 h on ice before washing twice in CyFACS. Cells were resuspended 
in 100 µl iridium-containing DNA intercalator (1:2,000 dilution in PBS; DVS 
Sciences) and incubated at room temperature for 20 min. Cells were washed twice 
in 250 µl MilliQ water and then diluted in a total volume of 700 µl in MilliQ water 
before injection into the CyTOF (DVS Sciences). Data analysis was performed 
using FlowJo v.9.3 (CyTOF settings) by gating on intact cells based on iridium 
isotopes from the intercalator, then on singlets by Ir191 versus cell length,  
then on live cells (Indium-live-dead minus population), followed by cell subset-
specific gating.

Phosphoepitope CyTOF (cytokine stimulation, pSTAT readouts). This assay 
was performed by the HIMC at Stanford University. PBMCs were thawed in 
warm medium, washed twice, counted by Vi-cell and resuspended at 5 × 106 viable 
cells ml−1. Then, 100 µl of cells were plated per well in 96-well deep-well plates. 
After resting for 1 h at 37 °C, cells were stimulated by adding 25 µl each of IFN-
α, IL-6, IL-10 or IL-2 and incubated at 37 °C for 15 min. Cells were then fixed 
with PFA, washed twice with CyFACS buffer (PBS supplemented with 2% BSA, 
2 mM EDTA and 0.1% sodium azide) and stained for 30 min at room temperature 
with 20 µl of surface antibody cocktail. Cells were washed twice with cyFACS 
buffer, permeabilized with 100% methanol and stored at −80 °C overnight. On 
the next day, cells were washed with cyFACS buffer and resuspended in 20 µl 
intracellular antibody cocktail in CyFACS buffer for 30 min at room temperature 
before washing twice in CyFACS buffer. Cells were resuspended in 100 µl iridium-
containing DNA intercalator (1:2,000 dilution in 2% PFA in PBS) and incubated 
at room temperature for 20 min. Cells were washed once with cyFACS buffer and 
twice with MilliQ water, then were diluted to 7.5 × 105 cells ml−1 in MilliQ water 
before injection into the CyTOF. Data analysis was performed using FlowJo v.9.3 
(CyTOF settings) by gating on intact cells based on the iridium isotopes from the 
intercalator, then on singlets by Ir191 versus cell length followed by cell subset-
specific gating.

Determination of serum immune proteins. This assay was performed in the 
HIMC at Stanford University. Human 50- or 51-plex Luminex polystyrene bead 
kits were purchased from Panomics/Affymetrix and were used according to the 
manufacturer’s recommendations with modifications as described below. Briefly, 
samples were mixed with antibody-linked polystyrene beads on 96-well filter-
bottom plates and incubated at room temperature for 2 h followed by overnight 
incubation at 4 °C. Room temperature incubation steps were performed on an 
orbital shaker at 500–600 r.p.m. Plates were vacuum filtered and washed twice 
with wash buffer, then incubated with biotinylated detection antibody for 2 h at 
room temperature. Samples were then filtered and washed twice as above and 
resuspended in streptavidin-PE. After incubation for 40 min at room temperature, 
two additional vacuum washes were performed and the samples were resuspended 
in Reading Buffer. Each sample was measured in duplicate. Plates were read using a 
Luminex 200 instrument with a lower bound of 100 beads per sample per cytokine. 
Custom assay control beads by Radix Biosolutions were added to all wells.

SOMAscan assay. Thirty-seven plasma samples (from 19 centenarians and 18 
others aged 50–79 years) from two different cohorts (PRIN06 and PRIN09) were 
used in this study. Samples were stored at −80 °C and sent on dry ice to SomaLogic. 
The SOMAscan platform was used to quantify levels of plasma proteins118. Briefly, 
this platform is based on modified single-stranded DNA (SOMAmers) that are 
used to bind to specific protein targets. Data in relative fluorescent units for 1,305 
SOMAmer probes were obtained for these samples and no samples or probe data 
were excluded. PRIN06 and PRIN09 samples were measured in two batches. 
Datasets were bridged to each other using SomaLogic calibrators.

Quantification and statistical analysis. Normalization procedures for Luminex 
assays. We conducted a three-step normalization procedure. First, we used an 
internal control (CON-S) that was run on each batch to plate-normalize the data. 
We considered the regression model

Yij = β + xij′β + zij′Y + cij′α + pi′θ + Eij,

where outcome Yij is the cytokine’s median fluorescence intensity averaged over 
duplicate wells (aMFI) for the jth participant on the 𝑖th plate, 𝐱 is the design vector 
of variables of interest with corresponding regression coefficient β, and z is the 
design vector of nuisance variables of corresponding regression coefficients γ.  
These may include baseline covariates and random coefficients to model 
longitudinal data. Covariance among repeated observations within participants (for 
example, longitudinal aMFI) was modeled via C(Eijk, Eijk′) for k ≠ k′. Parameter 
β0 is the intercept. This model also adjusts for nonspecific binding c (used CHEX4) 
(with corresponding regression coefficients α)30. The vector form permits modeling 
of any nonlinear effects of nonspecific binding on the outcome. For plate effects, we 
used the indicator-variable vector, p, of plate effects has regression coefficients θ.  

The variance of regression residual E is allowed to vary among plates, such 
as Var(Eij) ≠ Var(Ei′j) for i ≠ i′. Together, p′θ and variance Var(Eij) account, 
respectively, for location and scale effects of plates.

Second, for source normalization of the influenza vaccine studies versus 
chronic fatigue study, we used a naive correction in which PCA is conducted on 
all data and the effect of top components is removed by regression analysis on 
the data source until the batch effect is no longer significant. The mean absolute 
correlation is then computed as a function of the number of PCA components in 
batch-corrected versus raw data and heat maps for before and after PCA correction 
are also shown (Extended Data Fig. 4).

Guided auto-encoder and the inflammatory clock. When dealing with data with 
a large number of dimensions and complex network structures, we aimed to find 
a nonlinear method to summarize the data possibly to a compact representation. 
This compact representation can be further used for feature extraction, visualization 
or classification purpose. To obtain an informative representation, we proposed a 
model called GAE. The method is built based on Auto-Encoder with a combined 
objective. Auto-encoders use a nonlinear transformation of data and hence, can 
model complex processes119. One problem with auto-encoders is re-parameterization. 
With different initialization, it could have different results. Among the different types 
of visualizations with similar summarization levels, one usually wants a representation 
that is informative of a specific target. Hence, we can construct a representation 
with two focuses: (1) the learned compact representation can be recovered from the 
original data as much as possible (reconstruction loss) and (2) the learned compact 
representation should be as informative of the desired target as possible (prediction 
loss). Therefore, we proposed a structure, GAE, which balances the two objectives, to 
provide an informative representation. We applied GAE to extract an immunology 
score or inflammatory clock. It is a nonlinear transformation of the cytokine data in 
a person that both approximates the true age, while preserving the information of 
cytokine level.

Auto-encoder. Given the input data vector x, an auto-encoder aims to reconstruct 
the input data vector x. We consider that an auto-encoder with L encoding layers 
and L decoding layers has a depth of L and each layer has a fixed number of hidden 
nodes, m.

For convenience, the input layer is defined as h0(x) = x and the output of the lth 
hidden layer is defined as hl(x). The number of nodes in layer l is ml. The input into 
the lth layer of the network is defined as:

al(x) = hl−1(x)TWl + βl ,

where Wl is a real value weight matrix of ml−1 by ml and βl is a vector of length ml-1. 
The output of lth hidden layer is:

hl(x) = tanh(al(x))

where tanh is the hyperbolic tangent function:

tanh(x) =
1 − e−2x

1 + e−2x

We define the output of the Lth layer hL(x) as the coding layer. The decoding 
layers are from L + 1 to 2L − 1 layer with the same setting. Finally, a linear output 
layer is on top of the last decoding layer:

fAE(x) = h2L−1(x)TW2L−1 + β2L,

Given data vectors x, we train an auto-encoder and minimize the 
reconstruction loss on the data:

minimizeθ
∑

i
fAE

(

xi, θ
)

− xi22 + λθ2
2

where i is the range of the number of samples, θ represents all the parameters used 
in the auto-encoder and λ is the weight decay penalty used for regularization. To 
optimize objective (1), we used a stochastic optimization method ADAM120.

Guided auto-encoder. A GAE aims to reduce both reconstruction loss and 
predictive loss. Given the input x, a side-phenotype y and an auto-encoder fAE, the 
GAE incorporates a predictive function on the coding layer:

fG(x) = hL (x)T wG + βG,

with its own set of parameters wG and βG

Let θ be the set of all parameters of a GAE, the training objective is:

minimizeθ
∑

i

(

αfG
(

xi, θ
)

− yi22 + (1 − α) fAE
(

xi, θ
)

− xi22
)

+ λθ2
2, (2)

where α is a real value number between 0 and 1, which is called the guidance 
ratio. An example GAE with depth 2 and width 3 is shown in Supplementary 
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Fig. 1. We use the optimization method ADAM120 to minimize objective. By 
choosing different guidance ratios, we can reach different levels of balance between 
prediction loss and reconstruction loss.

Extraction of an inflammatory clock. To provide a marker summarization 
of a patient’s immune system health state, we present the inflammatory clock. 
This is the age of patient that is predictable from the inflammatory state of the 
immune system. To obtain this quantity, we focused on cytokine measurements. 
By construction, the inflammatory clock is a nonlinear function of cytokine 
measurements, but also an estimate of the patient’s true age.

To construct this quantity, we used GAE aimed to compactly represent cytokine 
measurements and predict side-phenotype chronological age. We identified best 
code length, among lengths from 1 to 10, using fivefold cross validation. We 
selected the length of code k, whose performance was not statistically significantly 
worse than that of longer codes (paired Student’s t-test P value >0.05). Within each 
fold, we performed nested threefold cross validation to select hyper-parameters 
(depth, weight decay and guidance ratio).

After obtaining the best code length as 5 (Extended Data Fig. 3a), we used 
fivefold cross validation to select the best hyper-parameter setting (depth = 2, 
guidance ratio = 0.2, L2 = 0.001) on all GAEs with a code length of 5. Finally, we 
trained the GAE on the whole dataset with the selected best hyper-parameter 
setting and obtained the predictive function as the inflammatory clock predictor. 
To derive the inflammatory clock index, we computed rank differences between 
exceptional longevity participants and adult controls. To do so, we first ranked both 
cohorts in terms of cAge and iAge. For each participant, we then computed the 
difference of their cAge rank and iAge rank and used this difference (iAge index) to 
stratify participants into high and low, if they were above or below the population 
mean, respectively. Any monotonic transformation of cAge or iAge does not affect 
ranks, hence findings are robust to transformations such as log and exp.

The model to construct iAge utilizes cross-sectional data, where the first 
instance for each individual record (baseline) is selected. Despite that a number 
of individuals’ samples were collected in a longitudinal manner between 2007 and 
2016 (Supplementary Fig. 1). To assess feature dependency to the iAge metric, 
a fivefold cross-validation procedure was conducted, which effectively split the 
dataset 80–20% repeatedly and absolute error was obtained from averaging model 
error obtained on each of the test sets.

Prediction of multimorbidity using cyclical coordinate descent and correlation 
with immunosenescence. We hypothesized that important immune components 
would emerge from fitting a linear regression model with l1 and l2 penalties, the 
Elastic Net penalty, a regularization algorithm that uses cyclical coordinate descent 
in a path-wise fashion. We envisioned an unbiased approach to select predictors 
of multimorbidity based on available data for all 902 participants while controlling 
for the age effect. A total of 127 features were included in the prediction model. 
We assume all of our predictors are standardized to a mean of 0 and s.d. of 1. The 
result of our fitting procedure is the set of predictor weights β and intercept α for 
the linear regression model. In practice, penalty weights are set by a data-driven 
procedure, such as tenfold cross validation. The minimum λ was chosen to yield 
the lowest MAE with the minimum set of features. We envisioned age-controlled 
feature selection by imposing a feature-specific penalty. In this procedure feature 
age is ‘forced in’ the model and the l1 penalty is able to choose from all other 
features. In practice, we created a vector of size 127 and chose α = 0 for feature 
age and α = 1 for the remaining 126 features. To investigate the effect of iAge on 
immunosenescence, multiple regression analysis was conducted using iAge as a 
predictor variable (controlled by age, sex and CMV) and the frequency of naive 
CD8+ T cells, as a target variable (a surrogate of immunosenescence). Similarly, the 
effect of iAge (after controlling for age, sex and CMV) was estimated on a total of 
92 cell stimulations. Adjusted P values (by permutation tests) were combined by 
using a modified Fisher’s combined probability test121.

Estimation of the inflammatory clock in centenarians and older control 
cohorts. We first aimed at estimating the minimum set of features required for 
accurate prediction of the inflammatory clock. To do so, we used the results 
from our previous analysis in which we investigated the composition of the 
inflammatory clock based on the first-order partial derivative of the inflammatory 
clock (Jacobians). We sorted the immune features based on their absolute Jacobian 
and subsequently generated n − feature set models, each with a different feature 
number and removed one feature at a time starting from the least to the most 
important, which is never fully discarded. With the removal of each feature, a 
P value (two sample Student’s t-test) on the cross-validation errors between the 
‘feature set model’ and the ‘all-feature-set model’ is computed. Removal of most 
features did not significantly affect prediction accuracy (Extended Data Fig. 2). 
The cross-validation error using only five features (model 1) (EOTAXIN, IFNG, 
GROA, TRAIL and CXCL9 (which are not removed as they are the last feature)), 
is not significantly different from the error obtained using all features (model 2), 
indicating that the inflammatory clock can be estimated with this reduced set, as 
accurately as by using all 50 features.

As one important immune protein was not measured in the SOMAscan assay 
(TRAIL), we aimed to build a regression model to predict inflammation, excluding 

TRAIL, which yields the same accuracy as model 1. Hence, we compared the 
inflammatory clock prediction accuracy of model 1, to the accuracy of a series of 
models (TRAIL excluded) including an increasing number of features based on 
feature contribution to the inflammatory clock, as performed previously. Using 
Stanford 1KIP data, we found that the prediction accuracy of a model when TRAIL 
is removed but containing EOTAXIN, MIP-1α, CXCL1, CXCL9, IFN-γ, IL-1β, 
IL-2, LEPTIN and PAI-1 was not different from that of model 1 (in which TRAIL 
is included) (by likelihood ratio test, P < 0.01).

We then directly estimated the inflammatory clock as the predicted age of 
participants in the aging control cohort and centenarians based on standardized 
coefficients from the previous analysis on the Stanford 1KIP dataset and 
normalized RTU values for EOTAXIN, MIP-1α, CXCL1, CXCL9, IFN-γ, IL-1β, 
IL-2, LEPTIN and PAI-1. The inflammatory clock was then used to compute an 
inflammatory clock index (rank cAge minus rank iAge) in these cohorts.

Enrichment analysis of iAge gene signature on Framingham Heart Study. 
The Framingham Heart Study gene expression, phenotypic clinical data and 
longitudinal survival data were downloaded from dbGap and preprocessed as 
detailed in Alpert et al.16. The enrichment of the gene signature in the Framingham 
Heart Study samples was calculated using single-sample gene-set enrichment 
analysis122. For survival analysis, we calculated a multivariate Cox regression model 
(n = 2,290) regressing all-cause mortality against the clinical covariates: age, sex, 
smoking status, diabetes, total cholesterol, HDL cholesterol, blood pressure, a 
cardiovascular disease status assessed on the date of the eighth exam and the  
iAge score.

Isolation of blood endothelial cells. Blood collected from young and old 
individuals was centrifuged to isolate the buffy coat, which was washed with PBS 
as described previously60. Following centrifugation, cell pellets were resuspended 
in blood outgrowth EC medium containing 20% FBS in EGM2 medium and 
seeded on collagen-coated plates. Medium was changed every 2 d and BECs were 
characterized once confluent.

Isolation of mouse aortic endothelial cells. Aortas from young (3–4 months) 
and old (2 years) mice were dissected, cut and digested using freshly prepared 
1 μg ml−1 Liberase solution (R&D) for 30 min. Following digestion, cell pellets were 
resuspended in EGM2 medium with 5% FBS. Once confluent, ECs were isolated by 
MACS using CD144-conjugated magnetic beads.

Endothelial functional assays. Tube formation. The functions of the generated 
hiPSC-ECs and blood ECs were characterized in angiogenic assays and compared 
to hiPSCs. Briefly, cultured iPSC-ECs were dissociated using 1× trypsin and 
1 × 104 cells were resuspended in EGM2 medium supplemented with 50 ng ml−1 
VEGF. Following this, cells were seeded on 24-well plates, precoated with Matrigel 
(Corning Matrigel Matrix) for 16–24 h.

Nitric oxide production. The capacity of iPSC-ECs and blood ECs to produce 
NO was assessed by measuring the concentration of NO in culture supernatants 
using a NO detection kit (Molecular Probe) in basal and acetylcholine-stimulated 
conditions. Briefly, nitrates in culture supernatants were converted into nitrite 
and the total amount of nitrite was determined by colorimetric Griess reaction. 
Readings were recorded by measuring the absorbance at 540 nm using a microplate 
reader.

Ac-LDL uptake. The capacity of iPSC-ECs and blood ECs to uptake Ac-LDL was 
assessed using fluorescently labeled LDL. Briefly, cells were incubated in 96-well 
white clear-bottom cell culture plates for 24 h and fluorescence was measured at 
Ex/Em = 540/575 nm. Results were calculated using a standard curve according 
to the manufacturer’s instructions (Biovision). A wash-off step was performed to 
determine nonspecific fluorescently labeled LDL.

In vivo angiogenesis assay. The capacity of iPSC-ECs to form functional 
capillaries in vivo was assessed by injecting 5 × 105 cells mixed in Matrigel to make 
a final volume of 200 μl. Cells were injected subcutaneously in SCID mice and after 
2 weeks, Matrigel plugs were excised for immunohistochemical analysis. Plugs 
were fixed in 4% PFA, sectioned and stained for human CD31. CD31+ human 
capillaries were quantified per field using a fluorescent microscope.

Cellular senescence activity assay. Cellular senescence assay was performed to detect 
SA-β-gal activity using a fluorometric format (Enzo, catalog no. ENZ-KIT129). 
Briefly, cell lysates were collected and SA-β-gal activity was measured using a 
fluorometric substrate. Fluorescence was measured at 360 nm (excitation)/465 nm 
(emission).

Statistics and reproducibility. For our experiments, no statistical method was 
used to predetermine sample size. No data were excluded from the analyses. No 
randomization or blinding was conducted for this study. Covariates such as age, 
BMI, detection of CMV and sex were controlled by their inclusion in all regression 
analysis. For the cardiovascular study the data were interpreted by one physician 
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(F.H.) who was blinded to age as well as clinical and biological data. Blinding was 
not performed in mice experiments.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The cell subpopulation, immune protein and cell signaling data for the Stanford 
Aging and Vaccination studies are publicly available on ImmPort Bioinformatics 
Repository (http://www.immport.org/immport-open/public/home/home) 
under the following study IDs SDY311 (cytokines, phosphoflow assays and 
CyTOF surface phenotyping), SDY312 (cytokines, phosphoflow assays and flow 
cytometry surface phenotyping), SDY314 (flow cytometry surface phenotyping), 
SDY315 (cytokines, phosphoflow assays and CyTOF surface phenotyping) and 
SDY478 (cytokines and CyTOF surface phenotyping). The gene expression data 
utilized in this study to compute gene expression-iAge has been uploaded to 
the Gene Expression Omnibus under accession number GSE168753. Our study 
complies in full with the STROBE statement, STARD guidelines and GATHER 
statement.

Code availability
The code used for the identification of immunotypes and construction of the 
inflammatory clock has been deposited on GitHub (https://github.com/) and 
is available under: https://github.com/clingsz/GAE. For the immunological 
characterization of immunotypes, we used R programming (https://www.r-project.
org/). The LASSO and Elastic Net regularized generalized linear models package 
(glmnet) for R programming can be found at: https://cran.r-project.org/web/
packages/glmnet/index.html. Maximum likelihood estimation is a function of the 
STATS4 R package found at: https://www.rdocumentation.org/packages/stats4/
versions/3.4.1.
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Extended Data Fig. 1 | 1000 immunomes Study design: systematic analysis of immune systems via ‘OMiCS’ approaches. The Stanford 1000 
Immunomes Project consist of 1001 ambulatory subjects age 8 to 96 (34% males, 66% females) recruited during the years 2007 to 2016 for a 
longitudinal study of aging and vaccination, and for an independent study of chronic fatigue syndrome from which only healthy controls were included. 
For all samples of the Stanford 1KIP, deep immune phenotyping was conducted at the Stanford Human Immune Monitoring Center, where peripheral 
blood specimens were isolated and analyzed using standard procedures. Peripheral blood samples were obtained by venipuncture and peripheral blood 
mononuclear cells or whole blood samples were used for determination of cellular phenotypes and frequencies (N = 935) and for investigation of in vitro 
cellular responses to a variety of cytokine stimulations (N = 818); serum samples were obtained and used for protein content determination (including 
a total of 50 cytokines, chemokines and growth factors) (N = 1001). Clinical characterization was assessed via clinical questionnaire in a total of 902 
subjects who completed the full set of 53 clinical items. From a total of 97 healthy young and older adults, comprehensive cardiovascular phenotyping was 
also conducted
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Extended Data Fig. 2 | Age distribution of the Stanford 1KIP cohort.
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Extended Data Fig. 3 | estimation of the GAe code length and accuracy of age prediction. We used 5-fold cross-validation to identify the best code 
length, among lengths from 1 to 10. We selected the length of code k, whose performance was not statistically significantly worse than that of longer 
codes (paired t-test p-value > 0.05). Within each fold we performed nested 3-fold cross-validation to select hyper-parameters (depth, weight decay 
and guidance-ratio). In our experiment, the best code length is 5 (a) as adding one more code (6) does not significantly improve the total loss (p = 0.18). 
After obtaining the best code length as 5, we used the 5-fold-cross-validation to select the best hyper-parameter setting (depth = 2, guidance-ratio = 0.2, 
L2 = 0.001) on all GAE with code length 5. Finally, we trained the GAE on the whole dataset with the selected best hyper-parameter setting and obtained 
the predictive function as the inflammatory clock predictor. GAE was compared to other machine learning methods such as autoencoder, neural networks, 
PCA, and RAW in (b). For the neural network, 2 fully connected layers with 5 nodes in each layer and tanh activation function were used. For PCA and 
RAW, we used elastic net to predict age. The GAE method outperforms linear methods for protein data reconstruction and prediction of chronological age 
(b). In (c), we found that the predictive performance of gradient boosting decision tree (GBDT) has similar performance as PCA. We conclude that GAE is 
superior to traditional machine learning methods.
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Extended Data Fig. 4 | elimination of batch effect for serum immune protein data. . Immune protein data from serum samples were subjected to 
normalization and batch correction procedures (See Methods) to ensure data from different sources can be combined and used as a whole. a, Spearman 
correlation between immune protein features and batch ID shows a strong dependency of data source on top 4 components (raw data, green line), which 
reaches a steady state after component 5. Data normalization and batch correction removes batch effect as indicated by lower mean absolute Spearman 
correlation between all features and batch id (blue line), which indicates impossibility to distinguish sample source from corrected data. b, Upper panel: 
immune protein expression heatmap of uncorrected data, Lower panel: immune protein expression heatmap of corrected data. The two batches come 
from two study cohorts, the Chronic Fatigue Syndrome Study (CFS) and Aging and vaccination study cohort (Flu).
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Extended Data Fig. 5 | iAge predictive of multi-mordity. To select for predictors of comorbidity without bias, based on available data for all 902 subjects 
while controlling for the age effect, age-adjusted cross-validation was performed (a). By applying differential penalty values for each regressor, age variable 
is ‘forced in’, while imposing a stringent penalty (the lasso penalty) to all other features, so that selected variables do not correlate with age.  
A Mean Absolute Error (MAE) for the prediction of comorbidity of 0.41 is observed (b). Eighteen features are selected including inflammatory clock, high 
cholesterol and BMI (c) and immune parameters such as total CD8 (+) T cells, plasmablasts and transitional B cells (negative predictors) and IgD+CD27- 
and IgD-CD27- B cells, effector CD8 (+) T cells, total lymphocytes and monocytes, and central memory T cells (positive predictors) (d)
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Extended Data Fig. 6 | univariate Regression between Age and CXCL9. Significant correlation between age and CXCL9 using univariate regression 
analysis. We used linear regression where CXCL9 were regressed onto age. Correlation coefficient (R2) and p-value of F-test of overall significance are 
reported.
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Extended Data Fig. 7 | Luminex data for cardiovascular validation cohort. In a validation study, 97 healthy adults (aged 25–90) well matched for 
cardiovascular risk factors, were selected from a total of 151 recruited subjects. Immune protein analysis was conducted in samples from these subjects. 
CXCL9, HGF, CXCL1, and LIF were found to change in the same direction in both the Stanford 1KIP and the validation cohort.
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Extended Data Fig. 8 | Human blood endothelial progenitor cells and mice endothelial cells. a, Representative images of human blood progenitor 
endothelial cells from young (left) and old (right) individuals. b, Representative images of capillary-like networks show impaired tube formation by human 
BECs of old individuals compared to young. To further confirm the potential contribution of CXCL9 in cardiovascular aging, we assessed its expression in 
young (3–4 month) and old mice (2 yr.) endothelial cells (c). ECs isolated from old mice showed higher levels of CXCL9 (P value = 0.023) (d), while at the 
same time showed impaired EC function as evident by decreased tube formation (P value = 0.042) (a, f). Figure S8: All data represented as mean ± SEM, 
n = 3, *P < 0.05. Statistical analyses were performed using Student’s t-test (paired). Scale bar: 50 μm.
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Extended Data Fig. 9 | expression of CXCR3 RNA in different tissue types. CXCR3 was not expressed in iPSC induced cardiomyocytes (iPSC-CM), 
Fibroblast, or iPSC. However, it is highly expressed in iPSC induced endothelial cells and Human Umbilical Vein Endothelial Cells (HUVEC). All data 
represented as mean ± SEM.
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Extended Data Fig. 10 | Validation of the effects of CXCL9 on endothelial function. Representative images of capillary-like networks from scramble- 
and CXCL9-KD hiPSC-ECs show that CXCL9-KD hiPSC-ECs retain their capacity to form tubes even at later passages when compared to scramble that 
showed impaired tube formation towards later passages of hiPSC-ECs. Scale bar: 50 μm. Experiment was repeated 3 times.
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