

Impact of age on T cell exhaustion in children, adolescents and adults with vertically acquired HIV infection

Hinatea Dieumegard^{1,2}, Doris G. Ransy¹, Ari Bitnun³, Jason Brophy⁴, Lindy Samson⁴, Fatima Kakkar^{5,6}, Michael T. Hawkes⁷, Stanley Read³, Armelle Le Campion², Hugo Soudeyns^{1,2,5,6}, EPIC⁴ Study Group. Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal; ²Département de microbiologie, infectiologie et immunologie, Faculté de Montréal; ³Hospital for Sick Children, Toronto; ⁴Children's Hospital of Eastern Ontario, Ottawa; ⁵Centre d'infectiologie mère-enfant, Centre de recherche du CHU Sainte-Justine, Montreal; ⁶Département de pédiatrie, Faculté de médecine, Université de Montréal; ⁷Department of Pediatrics, University of Alberta, Edmonton.

BACKGROUND

In adults with chronic viral infections, including HIV/AIDS, persistent antigen exposure leads to progressive loss of T cell function and T cell exhaustion, which interferes with the efficacy and maintenance of virus-specific cell-mediated immunity.

To determine whether the extent and dynamics of T cell exhaustion vary as a function of age, we characterized cell surface expression of immune checkpoint inhibitors (ICIs) that are associated with T cell exhaustion in children, adolescents and young adults who were infected with HIV by vertical transmission.

METHODOLOGY

Study participants were enrolled in the Early Pediatric Initiation, Canada Child Cure Cohort Study (EPIC⁴).

p < 0.0001 p < 0.0001 r = -0.5197 r = 0.4647100-50 cells (%) 80 cells 60 ຽ 30 ⊢ 20· ∑ 20 ЕM 40 Z CD4 CD4 Ő 20 20 30 10 20 30 Age at sample collection (years) Age at sample collection (years) p = 0.0022p = 0.0313r = 0.3491 p = 0.0022 r = -0.2323 p = 0.0313 100-25· 15[.] (%) r = 0.3491 <u>§</u> 1<u>60</u> **Bellsqeyts** 10 <u>60</u> 40- $\overline{\mathbf{Q}}$ CD8900 CD8CDM 20- $\overline{\mathbf{C}}$ _____0 20 0 Age at sample collection (years) 30 0 Age at sample collection (years) 30 Age at sample/collection (years) Age at sample collection (years) Participants were stratified based on their

RESULTS

p = 0.0224

r = 0.2498

Participant age influences the distribution of CD4⁺ and CD8⁺ T cell subtypes. Frequencies of CD4⁺ central memory (CM), CD4⁺ effector memory (EM), and CD8⁺ CM cells were positively correlated with age of participants (p<0.0001, p=0.0224, p=0.0022), whereas frequencies of naïve (N) CD4⁺ and CD8⁺ T cells were negatively correlated with age (p<0.0001, p=0.0313).

Multiparameter flow cytometry was used to measure expression of cell-surface markers associated with T cell exhaustion (PD-1, CD160, CTLA-4, LAG-3, TIGIT, Tim-3) in CD4⁺ and CD8⁺ T cell subsets isolated from peripheral blood mononuclear cells.

age (children = 0-10 years, adolescents = 10-18 years, young adults = 18-26 years). A significant difference was observed in CD8⁺ T cell frequencies between older subjets (<18 years old) and adolescents (10-18 years old). More statisatically significant differences were observed in CD4⁺ T cells subsets than in CD8⁺ T cells \bigcirc subsets.

STUDY PARTICIPANTS

EM 1,24	CD8+ TEMF	RA 24,7	(
0 10 ³	104	105	

0.015

⊢ 0.010-

Age at sample collection (years)

Degrees

A significantly higher proportion of CD8⁺ CM and CD8⁺ EM expressing Tim-3 and of CD4⁺ CM expressing LAG-3 was observed in younger as compared to older participants. Also, a higher proportion of CD4⁺ CM expressing PD-1 was observed in younger study participants.

		A	A 10 10	A
		Age <10	Age 10-18	Age >18
		years	years	years
Number of participants (n)		15	34	16
Age (years;		8.33 (6.00-	14.81 (13.57-	18.91 (18.43-
median, IQR)		9,00)	16.48)	19.65)
$\mathbf{C}_{\mathrm{ext}}$ (m. 0/)	Male	8 (53.33)	17 (50.00)	6 (37.50)
Sex (11, 70)	Female	7 (46.67)	17 (50.00)	10 (62.50)
	Α	3 (20.00)	3 (8.82)	4 (25.00)
HIV clade (p. %)	В	4 (26.67)	1 (2.94)	5 (31.25)
HIV Clade (n, %)	С	6 (40.00)	10 (29.41)	2 (12.50)
	Other	2 (13.33)	6 (17.65)	5 (31.25)
Age at ART initiation (years; median, IQR)		1.12 (0.00- 3.36)	1.51 (0.36- 5.99)	1.99 (0.98- 8.48)
HIV-1 viral load (RNA copies per ml plasma; median, range)		40 (<40-<40)	40 (<40-<40)	40 (<40-<40)
SVS at sample collection (<40	Yes	12.00 (80.00)	29 (85.29)	14 (87.50)
copies per ml plasma; n, %)	No	3.00 (20.00)	13 (14.71)	2 (12.50)

NUMBER OF CO-EXPRESSED ICIs (5-1)

exhaustion are defined by number of ICIs the expressed at their cell surface. Shown are quintuple (A,F), quadruple (B,G), triple (C,H), double (D,I) and single expression (E,J) of combinations of 6 ICIs (PD-1, CD160, CTLA-4, LAG-3, TIGIT, Tim-3) in CD4⁺ and CD8⁺ T cell subsets. In general, lower frequencies of cells co-ICIs expressing were

observed in children.

of

cell

Negative correlations were found between age and frequencies of CD4⁺ CM (p=0.0029), CD4⁺ EM (p=0.0478), CD8⁺ CM (p=0.0201) and CD8⁺ EM (p=0.0076) T cells coexpressing PD-1, TIGIT, and Tim-3.

DISCUSSION

Our results showed that the distribution of T cell subsets was age dependent. As previously described, younger participant had more naive T cells but less memory T cells and less CD4⁺ T cells as a whole. Higher frequencies of cells co-expressing ICIs were observed in older participants, which could be explained by a higher degree of exposure to HIV antigens resulting from a lower proportion of life under SVS and initiation of cART later in life. The higher frequency of cells co-expressing PD-1, TIGIT and Tim-3 in CD4⁺ T cells

observed in younger participants could be related to the fact that a large proportion of the HIV-1 viral reservoir resides within CD4⁺ T cells expressing PD-1 and TIGIT. T cells expressing Tim-3 are known to exhibit dysfunctional capacities to proliferate or to produce cytokines. Higher frequencies of CD8⁺ T cells expressing PD-1, TIGIT, and Tim-3 could explain in part why HIV infection progresses faster in children.

CONCLUSION

Overall, older participants had higher frequencies of cells co-expressing ICIs. The higher proportions of CD4⁺ and CD8⁺ CM and EM T cells coexpressing PD-1, TIGIT, and Tim-3 in younger children as opposed to adolescents and adults suggest a differential involvement of T cell exhaustion in the pathogenesis of pediatric HIV and in the composition of the viral reservoir as a function of age in vertically acquired HIV infection.

AKNOWLEGMENTS							
CHILDREN'S HOSPITAL OF EASTERN ONTARIO	STOLLERY CHILDREN'S HOSPITAL Christine Bon 	MCMASTER UNIVERSITY MEDICAL CENTRE	ROYAL UNIVERSITY HOSPITALNicole Kimball	 Suzanne S. Taillefer Audrée Janelle-Montcalm 	8		
 Jennifer Bowes HOSPITAL FOR SICK CHILDREN Cheryl Arneson 	B.C. WOMEN'S HOSPITAL & HEALTH CENTREAnnie Qiu	 Laura Puri MONTREAL CHILDREN'S HOSPITAL Danny Dong Hyun 	CHU SAINTE-JUSTINESilvie ValoisMartine Caty	International AIDS Society Stronger Together International AIDS Society Stronger Together	CANFAR CANADIAN FOUNDATION FOR AIDS RESEARCH SUR LE SIDA	CIHR IRSC Canadian Institutes of Health Research Instituts de recherche en santé du Canada	

